ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ

Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Η ΕΞΕΛΙΚΤΙΚΗ ΑΚΟΛΟΥΘΙΑ ΤΩΝ ΕΝΕΡΓΩΝ ΓΑΛΑΞΙΑΚΩΝ ΠΥΡΗΝΩΝ ΩΣ ΑΠΟΤΕΛΕΣΜΑ ΤΩΝ ΕΓΓΥΣ ΓΑΛΑΞΙΑΚΩΝ ΑΛΑΗΛΕΠΙΔΡΑΣΕΩΝ

Διδακτορική Διατριβή του Ηλία Κουλουρίδη

Τομέας Θεωρητικής και Μαθηματικής Φυσικής, Αστρονομίας και Αστροφυσικής Πάτρα 2009

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ

Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Η ΕΞΕΛΙΚΤΙΚΗ ΑΚΟΛΟΥΘΙΑ ΤΩΝ ΕΝΕΡΓΩΝ ΓΑΛΑΞΙΑΚΩΝ ΠΥΡΗΝΩΝ ΩΣ ΑΠΟΤΕΛΕΣΜΑ ΤΩΝ ΕΓΓΥΣ ΓΑΛΑΞΙΑΚΩΝ ΑΛΛΗΛΕΠΙΔΡΑΣΕΩΝ

Τοιμελής Επιτροπή

Χ. Γούδης, Καθηγητής Μ. Πλειώνης, Διευθυντής Ερευνών Β. Γερογιάννης, Καθηγητής

> Διδακτοφική Διατφιβή του Ηλία Κουλουφίδη

Τομέας Θεωρητικής και Μαθηματικής Φυσικής, Αστρονομίας και Αστροφυσικής Πάτρα 2009

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα αρχικά να ευχαριστήσω τον δρ. Μανώλη Πλειώνη, που σε όλη τη διάρκεια της πορείας μου, από την προπτυχιακή μου εργασία μέχρι σήμερα, ήταν δίπλα μου κάθε στιγμή. Η ολοκλήρωση αυτού του διδακτορικού οφείλεται σε μεγάλο βαθμό στη δική του αφοσίωση. Επίσης, θα ήθελα να ευχαριστήσω την τριμελή μου επιτροπή και ιδιαίτερα τον Καθηγητή Χρ. Γούδη, που μου έδωσε τη δυνατότητα να βρεθώ στο χώρο του Εθνικού Αστεροσκοπείου Αθηνών και να γνωρίσω όλους τους ανθρώπους με τους οποίους συνεργάστηκα αυτά τα χρόνια. Εξέχουσα θέση ανάμεσα σε αυτούς κατέχει ο δρ. Ι. Γεωργαντόπουλος για την μεγάλη συμβολή του στην προσπάθεια μου. θα ήθελα επίσης να ευχαριστήσω θερμά τον δρ. Vahram Chavushyan που μου δίδαξε την ανάλυση φασματοσκοπικών δεδομένων και με ξενάγησε στον κόσμο των τηλεσκοπίων.

Οφείλω να ευχαριστήσω το "Ινστιτούτο Αστρονομίας και Αστροφυσικής" του Εθνικού Αστεροσκοπείου Αθηνών, για την οικονομική ενίσχυση που μου προσέφερε στα πλαίσια των προγραμμάτων: "Αριστεία στην έρευνα Ι", με υπεύθυνους τον δρ. Ι. Γεωργαντόπουλο και δρ. Μανώλη Πλειώνη, "Αριστεία στην έρευνα ΙΙ", με υπεύθυνο τον καθ. Χρ. Γούδη και "MSEPOA" της Ευρωπαϊκής Ένωσης (Marie-Curie), με υπεύθυνο το δρ. Μανώλη Πλειώνη. Κατά τη διάρκεια του διδακτορικού, πραγματοποίησα τέσσερεις περιόδους παρατηρήσεων στο Μεξικό και πήρα μέρος σε τρία συνέδρια, τα έξοδα των οποίων καλύφθηκαν από τα παραπάνω προγράμματα καθώς και από το "Εθνικό Ινστιτούτο Αστροφυσικής, Οπτικής και Ηλεκτρονικής του Μεξικού" (INAOE) και το Εθνικό Πανεπιστήμιο του Μεξικού (UNAM), τα οποία και επισκέφθηκα πέντε φορές σε ισάριθμα ταξίδια.

Τέλος, ευχαριστώ τους γονείς μου και όλους τους ανθρώπους του κοντινού μου περιβάλλοντος που έκαναν υπομονή.

"Beyond time I traveled No space has bound me Followed the will to know The eternal order revealed"

From the journal of Holger Nilsson

Περιεχόμενα

1	Εισ	αγωγή	5
	1.1	Ο σκοπός της διατριβής και τα μέσα υλοποίησής της.	5
		1.1.1 Πρόλογος	5
		1.1.2 Πολυκυματική προσέγγιση	6
		1.1.3 Πιθανός μηχανισμός ενεργοποίησης μιας εξελικτικής ακολουθίας.	7
		1.1.4 Αντεπιχειδήματα.	8
		1.1.5 Στόχος της παρούσας διατριβής	9
	1.2	Γενικές γνώσεις	10
		1.2.1 Βασικά χαρακτηριστικά των Ενεργών Γαλαξιών.	10
		1.2.2 Γαλαξίες γραμμών εκπομπής - κατηγορίες και χαρακτηριστικά.	11
		1.2.3 Μοντέλο Ενοποίησης (Unification model)	14
		1.2.4 Μελανή οπή και δίσκος επαύξησης	17
2	Δεδ	ομένα και μεθοδολογία	21
	2.1	Δείγματα γαλαξιών	21
		2.1.1 Seyfert και γαλαξίες ελέγχου	21
		2.1.2 Λαμπροί υπέρυθροι γαλαξίες (BIRG) και γαλαξίες ελέγχου	22
		2.1.3 Σμήνη γαλαξιών.	23
	2.2	Οπτικές παρατηρήσεις.	24
		2.2.1 Faint Object Spectrograph and Camera (LFOSC)	24
		2.2.2 Boller & Chivens Spectrograph	25
	2.3	Βάσεις Δεδομένων	26
		2.3.1 Κατάλογοι γαλαξιών SSRS και CfA2	26
		2.3.2 Αστρονομικός δορυφόρος Υπερύθρου IRAS	28
		2.3.3 Δορυφόρος ακτινών-X XMM-Newton.	29
		2.3.4 Κατάλογος σμηνών γαλαξιών ABELL	29
		2.3.5 Sloan Digital Sky Survey (SDSS).	30
		2.3.6 The Minnesota Automated Plate Scanner Catalog (MAPS)	31
		2.3.7 NASA Extragalactic Database (NED)	32
	2.4	Μεθοδολογία	33
		2.4.1 Ανάλυση μικρής κλίμακας με χρήση των CfA2/SSRS	33
		2.4.2 Ανάλυση μικρής κλίμακας με χρήση ιδίων φασματοσκοπικών παρα-	
		τηρήσεων	34
		2.4.3 Ανάλυση μεγάλης κλίμακας με χρήση των CfA2/SSRS	36

A	Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF" Α.1 Εισαγωγή. Α.2 Bias (ηλεκτρονικός θόρυβος) Α.3 Flatfielding (επιπεδοποίηση) Α.4 Καθαρισμός κοσμικής ακτινοβολίας Α.5 Βαθμονόμηση άξονα διασποράς και διόρθωση γεωμετρικών σφαλμάτων. Α.6 Αφαίρεση υποβάθρου (background extraction) Α.7 Εξαγωγή του φάσματος Α.8 Διόρθωση της ροής Α.9 Υπολογισμός της ερυθρομετατόπισης.	93 93 94 95 95 99 102 104 105 109
	Δυάλυση ασσματοσμοτινών δεδομένων με το λουσιμικό "ΙΒΑΕ"	03
5	Επίλογος.	91
	 4.2 Ανάλυση αποτελεσμάτων. 4.3 Συμπεράσματα. 	. 85 . 89
4	Ενεργοι γαλαξιαχοι πυρηνες σε σμηνη γαλαξιων 4.1 Εισαγωγή.	83
4	3.4.3 Συμπεράσματα	. 80 83
	3.4.1 Ζεύγος αλληλεπιδρώντων γαλαξιών: Ο κεντρικός ενεργός γαλαξία 3.4.2 Ζεύγος αλληλεπιδρώντων γαλαξιών: Ο γειτονικός γαλαξίας	ς. 78 . 80
	3.4 Εφμηνεία των αποτελεσμάτων.	. 78
	3.3.2 Ανάλυση και αποτελέσματα.	. 72
	3.3 Φασματοσποπία των γειτόνων ενεργών γαλαξιών	. 72
	3.2.3 Συμπεράσματα.	. 69
	3.2.1 Εισαγωγή	. 61 62
	3.2 Λαμπροί υπέρυθροι γαλαξίες του IRAS	61
	3.1.2 Αναλυση και αποτελεσματά	. 54 . 59
	3.1.1 Εισαγωγή	. 53
3	Μελέτη περιβάλλοντος ενεργών γαλαξιών 3.1 Ενεργοί γαλαξίες Seyfert	53 53
2	2.5.3 Σ tatiotizos elegizos Kolmogorov - Smirnov.	. 49
	2.5.2 Συνάρτηση φωτεινότητας και συνάρτηση logN-logS	46
	2.5.1 Κοσμολογικό Υπόβαθοο	. 44
	2.4.6 Avaluon deconeval antival A .	41 44
	2.4.5 Φασματοσκοπική ανάλυση και προσδιορισμός φασματικού τύπου.	. 38
	2.4.4 Χρωματικό διάγραμμα υπέρυθρης ακτινοβολίας	. 37

2

المنسارات

C Χά φτες και φάσματα γαλαξιών .	115
D Πίνακες	153

Πεοιεχόμενα

Κεφάλαιο 1

Εισαγωγή

1.1 Ο σκοπός της διατριβής και τα μέσα υλοποίησής της.

1.1.1 Πρόλογος.

Από τότε που ανακαλύφθηκαν οι "ενεφγοί γαλαξιακοί πυφήνες" (Active Galactic Nuclei, AGN) στα κέντρα πολλών γαλαξιών, έχουν γίνει σημαντικές προσπάθειες να αποκαλυφθεί η πραγματική τους φύση, παρόλο που ακόμα δεν έχουμε πειστικές απαντήσεις σε πολλά βασικά ερωτήματα. Ενώ είμαστε σχεδόν σίγουροι για την ύπαρξη μίας μαζικής μελανής οπής (Massive Black Hole, MBH) στο κέντρο κάθε ενεργού γαλαξία, η οποία είναι υπεύθυνη για την υπέρμετρη ακτινοβολία που εκπέμπεται, από την άλλη, πολλά φαινόμενα που σχετίζονται με τη φύση των μελανών οπών είναι μόνο μερικώς κατανοητά. Τέτοια φαινόμενα είναι για παράδειγμα, ο μηχανισμός ενεργοποίησης και η τροφοδοσία της μαύρης τρύπας, η ακριβής μορφή και οι φυσικές διεργασίες που λαμβάνουν χώρα στο δίσκο επαύξησης(§1.2.4) και στον τόρο που προβλέπει το μοντέλο της ενοποίησης (Antonucci et al. 1993) (§1.2.3), η σχέση όλων αυτών με την έντονη διαδικασία μαζικής γένεσης αστέρων και ο ρόλος της ανάδρασης (feedback) από το AGN, η προέλευση των πιδάκων (jets) στους ράδιο-ισχυρούς (radio loud) γαλαξίες και η σχέση τους με το ενδογαλαξιακό υλικό, αλλά ακόμα και ο μηχανισμός ο οποίος παράγει την παρατηρούμενη ακτινοβολία στις ακτίνες-Χ και γ.

Η έλλειψη λεπτομεφειαχής γνώσης θεμάτων κλειδιών του φαινομένου των AGN μας αφήνει με πολλά κατακεφματισμένα κομμάτια πληφοφοφίας. Η θεωφία, στις πεφισσότεφες πεφιπτώσεις, δε δύναται να εξηγήσει τις παφατηφήσεις, αλλά και οι παφατηφήσεις δεν μποφούν ακόμα να πφοσεγγίσουν αφκετά κοντά τον γαλαξιακό πυφήνα για να επιβεβαιώσουν την οποιαδήποτε θεωφία. Οι φαδιοισχυφοί και φαδιοασθενείς AGN γαλαξίες, τα τύπου Ι και ΙΙ QSO, οι διαφοφετικοί τύποι γαλαξιών Seyfert, οι χαμηλού ιονισμού ενεφγοί γαλαξίες (LINER), οι μεταβατικοί, μεταξύ δύο καταστάσεων, γαλαξίες (Transition Objects, TOs) καθώς και οι γαλαξίες που παφουσιάζουν υπέφμετφη αστφογένεση (Starburst galaxies, SB) και η πιθανή τους σχέση με τους AGN αποτελούν μεφικά από τα κομμάτια που καλούμαστε να εφμηνεύσουμε και πιθανώς να ενοποιήσουμε σε μια συνεκτική και συνεπή θεωφία των AGN. Η γενική συμπεφιφοφά διαφοφετικών τύπων ενεφγών πυφήνων σε σχέση με τις ιδιότητες των

Κεφάλαιο 1. Εισαγωγή

γαλαξιών που τους φιλοξενούν ή το εγγύς περιβάλλον τους (σε αποστάσεις μερικών εκατοντάδων kpc) μπορεί να μας δώσει πολύτιμες πληροφορίες σχετικά με την κεντρική μηχανή παραγωγής ακτινοβολίας. Επιπλέον, η εύκολη πρόσβαση, στις μέρες μας, σε μεγάλες βάσεις παρατηρησιακών δεδομένων, όπως το SDSS, επιτρέπει σε αυτού του είδους τις μελέτες να αποδίδουν στατιστικά σημαντικά αποτελέσματα. Παρόλα αυτά, όσο μεγαλύτερος είναι ο κατάλογος που χρησιμοποιούμε, τόσο λιγότερος είναι συνήθως ο έλεγχος που έχουμε στα δεδομένα εισόδου και στην συνολική διαδικασία επεξεργασίας τους. Η άποψη μας είναι ότι είναι επικίνδυνο να βγάζουμε συμπεράσματα χρησιμοποιώντας δείγματα ενεργών γαλαξιών που συμπεριλαμβάνουν διαφορετικούς τύπους αντικειμένων, χωρίς να γνωρίζουμε τις απαντήσεις σε βασικά ερωτήματα, όπως για παράδειγμα: ισχύει το μοντέλο της ενοποίησης για όλους τους τύπου Ι και ΙΙ ενεργούς γαλαξίες; ποια είναι η πραγματική σχέση μεταξύ αλληλεπιδράσεων γαλαξιών, αστρογένεσης και πυρηνικής δραστηριότητας; ποια είναι η διάρκεια ζωής αυτών των φαινομένων; πως υπεισέρχονται οι LINER γαλαξίες στη συνολική εικόνα; Είναι όλοι τους AGN; Οι διαφορετικοί τύποι σημαίνουν ότι παρατηρούμε το ίδιο αντικείμενο από διαφορετική γωνία ή διαφορετικές εξελικτικές φάσεις του ίδιου αντικειμένου; Ποια είναι η φυσική διαφορά μεταξύ ραδιοισχυρών και ραδιοασθενών γαλαξιών αν υπάρχει; κ.τ.λ.

1.1.2 Πολυχυματική προσέγγιση.

Ο καλύτεφος ίσως τφόπος να απαντήσουμε σε τόσο σημαντικά ζητήματα που αφοφούν τη φύση των ενεφγών πυφήνων είναι η πολυκυματική παφατήφηση τους. Παφόλο που οι ενεφγοί γαλαξίες ανακαλύφθηκαν με παφατηφήσεις στο οπτικό μέφος του φάσματος, η ακτινοβολία τους στη πεφιοχή των ακτινών-Χ μας έδωσε την δυνατότητα να αναγνωφίζουμε με ευκολία AGN γαλαξίες, τόσο σε πολύ υψηλές εφυθφομεταθέσεις όσο και αποφφοφημένους, που δεν είναι οφατοί από τα οπτικά τηλεσκόπια. Παφόλα αυτά, το όφιο ενεφγειών των τηλεσκοπιών ακτινών-Χ είναι πεφίπου τα 15 keV και ενδέχεται πέφα από αυτό το όφιο να βφίσκεται ένας πολύ αποφφοφημένος, κφυμμένος στα πεφισσότεφα μήκη κύματος, πληθυσμός ενεφγών γαλαξιών (Compton Thick AGN). Με στόχο να ξεπεφάσει αυτό τον πεφιοφισμό και να φτάσει μέχφι και τα 40 keV θα εκτοξευτεί στα τέλη της επόμενης δεκαετίας ο δοφυφόφος "XEUS" (Arnaud et al. 2008).

Άλλοι εφευνητές υποστηφίζουν ότι ο μόνος τφόπος να αποφύγουμε την ισχυφή αποφφόφηση και να επιτύχουμε μία καλύτεφη εικόνα των εσώτεφων πεφιοχών του ενεφγού πυφήνα είναι η χφήση χιλιοστομετφικών (mm) και υποχιλιοστομετφικών (submm) παφατηφήσεων. Όμως, μέχφι στιγμής, δεν μποφούμε να επιτύχουμε υψηλή ανάλυση σε τέτοιου είδους παφατηφήσεις και πφέπει να πεφιμένουμε τη λειτουφγία της διάταξης τηλεσκοπίων "ALMA", η οποία θα είναι η πφώτη μεγάλης κλίμακας χιλιοστομετφική διάταξη με αυτή τη δυνατότητα (Maiolino, 2008).

Τέλος, πρέπει να αναφέρουμε ότι οι ακτίνες γ, που εκπέμπονται από τους πίδακες σε ορισμένους ενεργούς γαλαξίες, ενδέχεται να μας δώσουν πολύτιμες πληροφορίες για την κεντρική μηχανή παραγωγής ακτινοβολίας. Δεδομένα αναμένονται από το δορυφόρο "FERMI" της NASA στο μέλλον (http://fermi.gsfc.nasa.gov).

1.1.3 Πιθανός μηχανισμός ενεργοποίησης μιας εξελικτικής ακολουθίας.

Παρόλες τις δυσχολίες χαι τους περιορισμούς, πολλές μελέτες βασισμένες σε διαφορετικές μεθόδους προσπαθούν να διερευνήσουν ένα από τα βασικά προβλήματα των ενεργών γαλαξιών: τον μηχανισμό ενεργοποίησης του πυρήνα τους. Οι περισσότεροι ερευνητές συμφωνούν ότι η επισώρευση υλικού στην μελανή οπή (Lynden-Bell 1969) είναι υπεύθυνη για την ακτινοβολία, αλλά το πώς ξεκινάει το φαινόμενο δεν είναι αχόμα γνωστό. Υπάρχουν πολλά αντιφατιχά αποτελέσματα που αφορούν στο συγκεκριμένο θέμα. Είναι γνωστό πλέον και ευρέως αποδεκτό ότι οι αλληλεπιδράσεις μεταξύ δύο γαλαξιών μπορούν να προκαλέσουν την κίνηση υλικού στο εσωτερικό του γαλαξία με κατεύθυνση προς το κέντρο του, με αποτέλεσμα την συμπύκνωσή του και την ραγδαία αύξηση της αστρογένεσης. Το φαινόμενο αυτό καλείται Starburst. Επίσης πιστεύεται ότι η ίδια διαδικασία μπορεί να ενεργοποιήσει τον πυρήνα και από εκεί να εξελιχθεί στους διαφορετικούς τύπους AGN που παρατηρούμε. Όντως, υπάρχει μεγάλος αριθμός μελετών που συμπεραίνουν ότι λαμβάνει χώρα μια εξελικτική διαδικασία, που ξεκινά από τους γαλαξίες Starburst, στη συνέχεια ακολουθούν οι Seyfert τύπου 2 και μετά οι Seyfert τύπου 1 (π.χ. Storchi-Bergmann et al. 2001, Krongold et al. 2002). Επιπλέον, γύρω από ενεργούς πυρήνες έχουν παρατηρηθεί αστρικοί πληθυσμοί οι οποίοι δηλώνουν την παρουσία παρελθοντικής δραστηριότητας Starburst, σε κοντινή απόσταση από τον πυρήνα (50 h^{-1} kpc) (π.χ. Maiolino & Rieke 1995, Nelson & Whittle 1996, Hunt et al. 1997, Maiolino et al. 1997, Cid Fernandes, Storchi-Bergmann & Schmitt 1998, Boisson et al. 2000, 2004, Cid Fernandes et al. 2001, 2004, 2005). Αυτό καταδεικνύει την αλληλουχία των δύο καταστάσεων (Starburst και AGN), καθώς επίσης με μία πιθανή καθυστέρηση μεταξύ της εκκίνησης του Starburst και της τροφοδοσίας του AGN, από 0.05-0.1 Gyr (Mueller Sanchez et al. 2008) μέχρι και 0.5-0.7 Gyr (Kaviraj 2008). Στην εργασία των Davies et al. (2007) αναλύθηκε η γένεση αστέρων στο εσωτερικό 9 γαλαξιών Seyfert και βρέθηκαν αποδείξεις πρόσφατων, αλλά όχι πια ενεργών, επεισοδίων έντονης αστρογένεσης στις κεντρικές περιοχές τους, τα οποίοι φαίνεται να συνέβησαν πριν από 10-300 Myr. Επιπλέον, στις περισσότερες από αυτές τις εργασίες (π.χ. Hunt et al. 1997, Maiolino et al. 1997), γίνεται σαφής διαχωρισμός των ενεργών γαλαξιών τύπου Ι και ΙΙ, βασισμένος στο γεγονός ότι η πρόσφατη αστρογένεση είναι παρατηρήσιμη μόνο γύρω από τους ενεργούς πυρήνες τύπου ΙΙ. Μεγαλύτερη ώθηση στην υπόθεση συσχετισμού αλληλεπιδράσεων - ενεργότητας δίνουν και οι πρόσφατες παρατηρήσεις των Tang et al. (2008), που ανακαλύψανε με παρατηρήσεις ουδέτερου υδρογόνου (HI), ότι το 94% των γαλαξιών Seyfert του δείγματος τους ήταν διαταραγμένοι, σε αντίθεση με το 19% του δείγματος των ανενεργών γαλαξιών ελέγχου τους. Σε αυτό το σημείο πρέπει επίσης να αναφέρουμε ότι η μεγαλύτερη θεωρητική επιτυχία της σχέσης Starburst/AGN είναι ο τερματισμός της διαδικασίας της αστρογένεσης, ο οποίος προκαλείται από την ανάδραση (feedback) του ενεργού πυρήνα και μπορεί να εξηγήσει την ύπαρξη κόκκινων και "νεκρών" ελλειπτικών γαλαξιών (π.χ. Springel et al. 2005a, Di matteo et al. 2005, Khalatyan et al. 2008). Όμως, παρά τα όσα αναφέρονται παραπάνω, μας λείπουν αχόμα ισχυρές παρατηρησιακές αποδείξεις της ανάδρασης (Tremonti, Moustakas, Diamond-Stanic, 2007, Bundy et al. 2008). Τέλος, η σχέση μεταξύ της μορφολογίας των γαλαξιών που

φιλοξενούν ενεργούς πυρήνες και του τύπου του AGN μας οδηγεί στα ίδια γενικά συμπεράσματα (π.χ. Martinez et al. 2008).

Συνοψίζοντας τα παραπάνω, από τη δική μας οπτική γωνία, η σχέση Starburst/AGN, παρόλο που δεν είναι καλά τεκμηριωμένη, αποτελεί ένα από τα πιο πιθανά σενάρια ενεργοποίησης του πυρήνα. Επιπροσθέτως, η απόσβεση της αστρογένεσης του Starburst, μπορεί να οφείλεται στην ανάδραση από τον ενεργό πυρήνα, ο οποίος ενεργοποιείται, με μία πιθανή καθυστέρηση της τάξης του 0.5 Gyr, και εξελίσσεται από τύπου 2 σε τύπου 1. Εάν αυτό είναι αληθές, οι αλληλεπιδράσεις και τα αποτελέσματα τους στον γαλαξία που φιλοξενεί τον AGN δεν είναι ομοίως παρατηρήσιμα κατά την διάρκεια όλων των φάσεων της ζωής και της εξέλιξης του φαινομένου. Ένα τέτοιο εξελικτικό σενάριο αμφισβητεί φυσικά την πιο απλή μορφή του μοντέλου της ενοποίησης (§1.2.3).

1.1.4 Αντεπιχειοήματα.

Υπάρχουν όμως στοιχεία τα οποία μας οδηγούν προς την αντίθετη κατεύθυνση. Οι Li et al. (2008), χρησιμοποιώντας τα δεδομένα του SDSS καταλόγου, έδειξαν ότι δεν υπάρχει αυξημένος αριθμός AGN γαλαξιών με κοντινούς γείτονες, σε αντίθεση με τους γαλαξίες Starburst, και επομένως δεν υποστηρίζουν τις διαταραχές λόγω αλληλεπιδράσεων ως αιτία του φαινομένου των ενεργών πυρήνων. Αφήνουν όμως ανοιχτό το ενδεχόμενο τα αποτελέσματα τους να υπόχεινται σε ένα συστηματικό σφάλμα λόγω της πιθανής καθυστέφησης μεταξύ της ενεργοποίησης των δύο φαινομένων. Εξάλλου, έχουν παρατηρηθεί πλατιές γραμμές εκπομπής από τύπου 2 ενεργούς γαλαξίες, που θεωρείται ότι προέρχονται από την αντανάκλαση της ακτινοβολίας στην εσωτερική επιφάνεια του τόρου που προβλέπει το μοντέλο της ενοποίησης. Οι κουμμένες πλατιές γραμμές εκπομπής, όπως ονομάζονται, παρατηρούνται μόνο στο 50% των Sy2 γαλαξιών (Tran 2003), όμως αυτό μπορεί να οφείλεται σε αχόμα μεγαλύτερη αποροόφηση στο υπόλοιπο 50% (Shu et al. 2008). Σε αντίθεση με αυτήν την υπόθεση έρχονται οι παρατηρήσεις μη απορροφημένων Sy2 γαλαξιών (Brightman et al. 2008, Bianchi et al. 2008), οι οποίες θέτουν υπό αμφισβήτηση τη γενικευμένη εικόνα του μοντέλου της ενοποίησης, σύμφωνα με το οποίο η έλλειψη πλατιών γραμμών αποδίδεται αποκλειστικά στην απορρόφηση.

Πρέπει να σημειωθεί σε αυτό το σημείο ότι το εξελικτικό σενάριο δεν αντιτίθεται του μοντέλου της ενοποίησης. Υποδεικνύει ότι οι διαφορετικοί τύποι γαλαξιών AGN είναι στην πραγματικότητα το ίδιο αντικείμενο, όπως προτείνεται και από το μοντέλο της ενοποίησης, αλλά όχι υποχρεωτικά και στην ίδια εξελικτική φάση. Είναι αναμενόμενο όμως, και μόνο ο προσανατολισμός του τόρου να καθορίζει την εμφάνιση ενός Sy1 ή ενός Sy2 γαλαξία. Αυτό ενδέχεται να συμβαίνει όταν τα μοριακά νέφη, που προκαλούν την απορρόφηση, σχηματίζουν ένα τόρο γύρω από τον πυρήνα ενώ δεν έχουν ακόμα διαλυθεί από την ανάδραση του AGN.

Παίρνοντας υπόψη όλα όσα αναφέρθηκαν σε αυτή την εισαγωγή, η ανάγκη για πιο προσεκτική στατιστική ανάλυση είναι προφανής. Μεγάλος αριθμός δεδομένων μπορεί να μας προσφέρει καλύτερα και πιο αξιόπιστα αποτελέσματα, αλλά όμως τα δεδομένα αυτά θα πρέπει να έχουν κατηγοριοποιηθεί, εκ των προτέρων, με σκοπό

να τονιστούν οι ομοιότητες και οι διαφορές των διαφορετικών τύπων AGN και όχι πιθανώς να εξαλειφθούν λόγω της σώρευσης και μαζικής τους ανάλυσης.

1.1.5 Στόχος της παρούσας διατριβής.

Σκοπός του διδακτορικού αυτού είναι να αναδείξει τις ομοιότητες και τις διαφορές των ενεργών πυρήνων, μελετώντας το περιβάλλον γαλαξιών τύπου Sy1, Sy2, αλλά και λαμπρών υπέρυθρων γαλαξιών (BIRG, οι οποίοι ως επί το πλείστον είναι τύπου Starburst και Sy2), συγκρίνοντας το με το περιβάλλον κανονικών μη ενεργών γαλαξιών. Διερευνάται επίσης εις βάθος, η σχέση Starburst και AGN γαλαξιών και περιλαμβάνεται η αναλυτική φασματοσκοπική μελέτη και κατηγοριοποίηση των γειτόνων των Seyfert και BIRG, σε μία προσπάθεια να βρεθεί η αναμενόμενη αμφίδρομη σχέση μεταξύ των αλληλεπιδρώντων γαλαξιών. Η ανάλυση που ακολουθεί στο κεφάλαιο 3 βασίζεται σε προηγούμενες δισδιάστατες μελέτες (Dultzin et al. 1999, Krongold et al. 2002), αλλά είναι τρισδιάστατη, εφόσον περιλαμβάνει και την επιπλέον πληροφορία της ερυθρομετάθεσης των αντικειμένων. Εν κατακλείδι, προτείνεται ένα συνολικό εξελικτικό σενάριο, που περιλαμβάνει όλους τους τύπους των ενεργών γαλαξιών που παρατηρούνται στο τοπικό σύμπαν. Το τελευταίο τμήμα της διατριβής (κεφάλαιο 4) προσεγγίζει το πρόβλημα του περιβάλλοντος των ενεργών γαλαξιών από μία διαφορετική πλευρά, αυτή των σμηνών γαλαξιών. Η ανεύρεση των ενεργών πυρήνων σε αυτή την περίπτωση γίνεται με χρήση δεδομένων ακτινών-Χ από το δορυφόρο XMM-Newton. Η ορθή ερμηνεία των αποτελεσμάτων προϋποθέτει την σύγκριση των αποτελεσμάτων με οπτικά δεδομένα, η οποία ακολουθεί σε δεύτερη φάση.

Στόχος μας είναι να ρίξουμε φως στις πιθανές συνθήκες και φυσικές διεργασίες που λαμβάνουν χώρα πριν την ενεργοποίηση και κατά τη διάρκεια της εξέλιξης του φαινομένου των AGN. Εφόσον πιστεύουμε ότι ο ρόλος των γαλαξιακών αλληλεπιδράσεων, ως γενεσιουργός αιτία του φαινομένου, είναι σημαντικός, οι προσπάθειές μας επικεντρώνονται στο περιβάλλον των ενεργών γαλαξιών και όχι στους ίδιους τους γαλαξίες. Θέλοντας να συσχετίσουμε τα χαρακτηριστικά τους με τις αλληλεπιδράσεις, οφείλουμε να είμαστε πολύ προσεκτικοί στην επιλογή των δειγμάτων μας, ώστε να είμαστε σε θέση να αναδείξουμε τις διαφορές τους. Εξάλλου, τα δείγματα μας είναι αρκούντως μικρά ώστε να επικεντρωθούμε στη λεπτομερειακή μελέτη κάθε αντικειμένου χωριστά. Οι μελέτες που ακολουθούν πρέπει να θεωρηθούν πιλοτικές, από την άποψη ότι τα αποτελέσματα τους θα μας καθοδηγήσουν στην περαιτέρω ανάλυση μεγαλύτερων δειγμάτων.

1.2 Γενικές γνώσεις.

1.2.1 Βασικά χαρακτηριστικά των Ενεργών Γαλαξιών.

Οι ενεργοί γαλαξιακοί πυρήνες εκπέμπουν μεταξύ των 10^{42} και 10^{48} erg/s. Η ακτινοβολία στο οπτικό μέρος του φάσματος είναι συνήθως μεταβλητή, με διαταραχές γύρω από τη μέση ακτινοβολία $\sim 10\%$ σε χρονική διάρκεια μερικών ετών. Αυτή η μεταβλητότητα φαίνεται να αυξάνει όσο αυξάνεται και η συχνότητα της ακτινοβολίας και πλησιάζει ένα παράγοντα περίπου ίσο με 2 στις ακτίνες Χ. Παρόλα αυτά οι AGN

Σχήμα 1.1: Το φάσμα του ενεργού γαλαξία NGC4151.

δεν παφουσιάζουν στοιχεία πεφιοδικότητας παφόμοια με αυτά των μεταβλητών αστέφων. Επίσης το συνεχές φάσμα το οποίο λαμβάνουμε από ένα AGN είναι αφκετά διαφοφετικό από αυτό ενός κανονικού γαλαξία. Χοντφικά, ενώ ένας κοινός γαλαξίας εκπέμπει πεφίπου όλη του την ενέφγεια, η οποία πφοέφχεται σχεδόν εξολοκλήφου από τους αστέφες που εκπέμπουν σαν μελανά σώματα, σε μία μικφή πεφιοχή του φάσματος, το συνεχές φάσμα ενός ενεφγού γαλαξία είναι κατά πφοσέγγιση επίπεδο, από το υπέφυθφο έως τις σκληφές ακτίνες X (2-10 keV). Στην εικόνα 1.1 μποφούμε να δούμε ένα χαφακτηφιστικό μέφος του φάσματος ενός AGN γαλαξία.

Το πρώτο χαρακτηριστικό των γραμμών εκπομπής ενός φάσματος AGN, που το διαχωρίζει από το φάσμα ενός κανονικού γαλαξία, είναι το μεγάλο πλάτος τους,

το οποίο μερικές φορές φτάνει τα 100 Angstrom. Δεύτερον, οι γραμμές εκπομπής δεν διαφέρουν ιδιαίτερα μεταξύ των AGN σε σχέση με άλλες ιδιότητες. Παρατηρούμε σχεδόν πάντα τις $Ly\alpha$, Balmer, C IV 1549 doublet, [O III]5007, $H\alpha$ και τις γραμμές του σιδήρου $K\alpha$ [6.4 keV].

Πιστεύεται ότι οι γραμμές εκπομπής προέρχονται από νέφη διαφορετικής πυκνότητας και θερμοκρασίας, τα οποία περιστρέφονται γύρω από την μελανή οπή που βρίσκεται στο κέντρο του γαλαξία. Οι πλατιές γραμμές εκπομπής προέρχονται από τα υψηλής πυκνότητας και ταχύτητας περιστροφής νέφη που βρίσκονται κοντά στην μελανή οπή και ονομάζεται περιοχή πλατιών γραμμών [Broad Line Region (BLR)], ενώ οι λεπτές γραμμές εκπομπής προέρχονται από χαμηλής πυκνότητας και μικρότερης ταχύτητας περιστροφής νέφη που είναι πιο απομακρυσμένα και ονομάζεται περιοχή λεπτών γραμμών [Narrow Line Region (NLR)]. Υπάρχει και η περίπτωση τα πλάτη των γραμμών να οφείλονται σε τυχαίες θερμικές κινήσεις των μορίων της σκόνης, όμως έχει βρεθεί ότι οι θερμοκρασίες των νεφών δεν είναι τόσο υψηλές ώστε να εξηγήσουν το πλάτος των γραμμών και συνεπώς είναι αναγκαίο να περιστρέφονται ταχύτατα για να εξηγηθεί το φαινόμενο.

Τέλος, ένα βασικό χαφακτηφιστικό ενός μεγάλου ποσοστού ενεφγών γαλαξιών είναι η ύπαφξη δύο λαμπφών φάδιο-λοβών και πιδάκων (jets) που εκπέμπονται κάθετα στο δίσκο επαύξησης, τα οποία συνδέουν την κεντφική πηγή με τους λοβούς. Σε αντίθεση με την ακτινοβολία στο οπτικό και στο υπέφυθφο μέφος του φάσματος, η οποία είναι θεφμικής πφοέλευσης, το φαδιοφάσμα είναι μη θεφμικό και το πιθανότεφο είναι να έχει σχέση με την ακτινοβολία σύγχφοτφον από σχετικιστικά ηλεκτφόνια. Τα πεφισσότεφα από τα γνωστά μας AGN εκπέμπουν ισχυφά στο φαδιοφωνικό μέφος του φάσματος. Παφόλα αυτά η φωτεινότητα σε αυτή την πεφιοχή δεν ξεπεφνά το 1% της συνολικής βολομετφικής φωτεινότητας.

1.2.2 Γαλαξίες γραμμών εκπομπής - κατηγορίες και χαρακτηριστικά.

Ένα σημαντικό ποσοστό γαλαξιών παρουσιάζουν λεπτές γραμμές εκπομπής στο φάσμα τους. Μία κατηγορία τέτοιων αντικειμένων έχει φάσματα τα οποία μοιάζουν με αυτά που προέρχονται από περιοχές ιονισμένου υδρογόνου (περιοχές HII) (Huchra 1977). Προφανώς, αυτά τα αντικείμενα περιέχουν αέριο το οποίο φωτοϊονίζεται από θερμούς αστέρες και γι' αυτό το λόγο καλούνται γαλαξίες-HII (French 1980) ή, όπως συνηθίζεται για τους πιο λαμπρούς από αυτούς, γαλαξίες Starburst (Weedman et al. 1981, Balzano 1983). Η ονομασία "πυρηνικός γαλαξίες Starburst" (SBN), αναφέρεται σε αντικείμενα που παρουσιάζουν ισχυρή αστρογένεση στο κεντρικό μέρος του γαλαξία και ως εκ τούτου οι γραμμές εκπομπής τους παράγονται ως επί το πλείστον από μια περιορισμένη περιοχή γύρω από τον πυρήνα.

Σύμφωνα με τα όσα αναφέραμε παραπάνω για τις ιδιότητες των ενεργών γαλαξιών, θα επιχειρήσουμε να τους κατατάξουμε σε διάφορες κατηγορίες οι οποίες περιλαμβάνουν συγκεκριμένα χαρακτηριστικά. Ο διαχωρισμός αυτός δεν είναι απόλυτος, καθώς πολλοί από τους AGN μπορούν να βρεθούν σε περισσότερες από μία κατηγορίες ανάλογα με την προτεραιότητα που δίνουμε σε κάποια από τα χαρακτηριστικά τους.

Κεφάλαιο 1. Εισαγωγή

Οι AGN γαλαξίες μπορούν να διαχριθούν καταρχήν ανάλογα με την εκπομπή τους στο ραδιοφωνικό μέρος του φάσματος. Οι περισσότεροι ραδιογαλαξίες παρουσιάζουν δύο χαρακτηριστικούς λοβούς. Ο κάθε λοβός είναι αποτέλεσμα ενός σχετικιστικού πίδακα. Αυτές οι μορφοποιήσεις πλάσματος μπορεί να εκτείνονται από 10 h^{-1} kpc έως 1 h^{-1} Mpc από τον πυρήνα. Όταν η γωνία μεταξύ της ευθείας οράσεως και του πίδακα είναι μικρή, όλο το φάσμα κυριαρχείται από ισχυρά πολωμένο, μεταβλητό και λαμπρό συνεχές. Αυτά τα αντικείμενα καλούνται Blazars και χωρίζονται περαιτέρω σε δύο υποκατηγορίες: Τα ισχυρώς πολωμένα QSOs (HPQs) τα οποία εμφανίζουν πλατιές γραμμές εκπομπής και τα BLLs τα οποία εμφανίζουν ασθενείς ή και καθόλου γραμμές εκπομπής. Στην εικόνα 1.2 βλέπουμε τον γαλαξία NGC4261, ο οποίος είναι ένας χαρακτηριστικός ραδιογαλαξίας.

Λόγω του ότι έχουν γίνει εκτεταμένες μελέτες στο φαδιοφωνικό μέφος του φάσματος, οι φαδιογαλαξίες χωφίζονται επιπλέον και σε άλλες υποκατηγοφίες. Ένας απλός διαχωφισμός γίνεται ανάλογα με την φωτεινότητα στη συχνότητα $\nu = 1.4$ GHz. Eάν $L_{1.4} \leq 10^{25}$ W· Hz⁻¹, καλούνται ασθενείς φαδιογαλαξίες [Weak Radio Galaxies (WRGs)], ενώ αν $L_{1.4} > 10^{25}$ W· Hz⁻¹, καλούνται ισχυφοί φαδιογαλαξίες [Powerful Radio Galaxies (PRGs)]. Το φάσμα των WRGs στο φαδιοφωνικό είναι ένας νόμος δύναμης (power law) με απότομη κλίση $\alpha \geq 0.4$, ενώ τα PRGs παφουσιάζουν επίπεδο φάσμα με κλίση $\alpha \leq 0.4$ γύφω από το 1 GHz.

Μποφούμε επίσης να κατηγοφιοποιήσουμε τους φαδιογαλαξίες ανάλογα με τα

χαρακτηριστικά των λοβών. Έτσι αν q είναι ο λόγος της απόστασης μεταξύ των 2 λοβών προς το συνολικό μέγεθος της πηγής και $q \le 0.5$ τότε οι γαλαξίες καλούνται FRI (Fanaroff-Riley type I), ενώ αν q > 0.5 καλούνται FR II (Fanaroff-Riley type II). Οι FRII ραδιογαλαξίες χαρακτηρίζονται από ισχυρή εκπομπή στο ραδιοφωνικό (Radio loud) με $L_{(178MHz)} > 10^{25}$ W·Hz⁻¹, ενώ οι FRI από ασθενή εκπομπή (Radio quiet). Τα αντικείμενα που είναι Radio loud φιλοξενούνται πάντα σε ελλειπτικούς γαλαξίες. Οι FRII ραδιογαλαξίες παρουσιάζουν τα φασματικά χαρακτηριστικά των Seyfert γαλαξιών (βλ. επόμενη παράγραφο). Όταν έχουν πλατιές γραμμές εκπομπής ονομάζονται BLRGs (Broad Line Radio Galaxies) ενώ αντιστοίχως όταν έχουν λεπτές NLRGs (Narrow Line Radio Galaxies). Όλα τα QSOs είναι επίσης FRII ενώ το φάσμα των FRI ομοιάζει με αυτό των LINERS ή πολλές φορές δεν παρατηρούνται καθόλου γραμμές εκπομπής. Οι διαφορές που παρατηρούνται στους 2 τύπους FR ραδιογαλαξιών οφείλονται πολύ πιθανά στην υποηχητική κίνηση της κεφαλής του πίδακα στους FR I συγκρινόμενη με την υπερηχητική κίνηση στους FR II που οδηγεί σε κύματα shock και ισχυρή ακτινοβολία (Ian Robson, Active Galactic Nuclei, 1996).

Σχήμα 1.3: Χαρακτηριστικά φάσματα διαφορετικών τύπων γαλαξιών.

Μια βασική κατηγορία ενεργών γαλαξιών είναι οι γαλαξίες Seyfert, οι οποίοι έχουν λαμπρούς, ημιαστρικούς πυρήνες και φάσματα με γραμμές εκπομπής που καλύπτουν μία ευρεία περιοχή ιονισμού (Khachikian and Weedman 1974). Οι Seyfert

γαλαξίες διαιρούνται χυρίως σε δύο υποκατηγορίες, τους Seyfert τύπου 1 και 2. Οι Seyfert τύπου 1 φιλοξενούνται από κανονικούς σπειροειδείς γαλαξίες ή ελλειπτικούς και το βασικό τους χαρακτηριστικό είναι οι πλατιές επιτρεπτές γραμμές εκπομπής και οι λεπτές απαγορευμένες γραμμές εκπομπής. Οι λεπτές γραμμές είναι χαρακτηριστικές ακτινοβολίας από χαμηλής πυκνότητας ιονισμένο αέριο, με πυκνότητα ηλεμτρονίων $n_e \cong (10^3 - 10^6)$ cm⁻³. Οι Seyfert τύπου 2 έχουν περίπου το ίδιο φασματικό προφίλ με τους τύπου 1 με τη διαφορά ότι στερούνται πλατιών γραμμών εκπομπής. Η αιτία αυτής της διαφοράς δεν είναι αχόμα πλήρως χατανοητή αλλά σύμφωνα με το επικρατέστερο μοντέλο σήμερα (Unification Model) οφείλεται στον τόρο σκόνης που περικλείει τον ενεργό πυρήνα και όχι στον ίδιο τον πυρήνα. Θα διερευνήσουμε αναλυτικότερα αυτή την θεωρία και τα προβλήματα της παρακάτω. Γενικά η βολομετρική φωτεινότητα των Seyfert τύπου 1 είναι ισχυρότερη από αυτή των τύπου 2 κατά ένα παράγοντα ~ 100 . Υπάρχουν επίσης και ενδιάμεσοι τύποι Seyfert γαλαξιών οι οποίοι είναι οι τύπου 1.2, 1.5, 1.8 και 1.9. Οι παραπάνω τύποι παρουσιάζουν μικτά τα χαρακτηριστικά των δύο βασικών κατηγοριών αλλά σε γενικές γραμμές οι τύπου 1.2 και 1.5 ομοιάζουν περισσότερο στους Seyfert τύπου 1 ενώ οι 1.8 και 1.9 στους τύπου 2.

Στα παραπάνω μπορούμε να προσθέσουμε και τα QSOs που παρατηρούνται σε μεγάλες ερυθρομεταθέσεις και παρουσιάζουν τα χαρακτηριστικά των Seyfert τύπου 1, αλλά φωτεινότητα τους είναι τόσο μεγάλη που η ανίχνευση του γαλαξία που φιλοξενεί τον ενεργό πυρήνα είναι πολύ δύσκολη. Η διάμετρος τους είναι μικρότερη από 1". Το 10% περίπου των QSOs είναι radio loud αντικείμενα, ενώ το υπόλοιπο 90% είναι radio quiet.

Μπορούμε να διακρίνουμε ακόμα μία κατηγορία AGN γαλαξιών, αυτή των LINERS (Low Ionization Nuclear Emission Line Region), οι οποίοι ομοιάζουν με τους Seyferts αλλά οι λεπτές γραμμές εκπομπής έχουν πολύ μικρότερο βαθμό ιονισμού. Έχουν επίσης ισχυρή γραμμή εκπομπής ΟΙΙΙ $\lambda(4363)$, η οποία υποδεικνύει θερμοκρασία $T \cong 40,000K$.

Τέλος πρέπει να αναφέρουμε και τα λεγόμενα BL Lac αντικείμενα τα οποία δείχνουν ακραία συμπεριφορά. Συγκεκριμένα η ακτινοβολία τους στις ακτίνες X και στο ραδιοφωνικό μέρος του φάσματος είναι μεταβλητή σε κλίμακες μικρότερες της μίας ημέρας. Η οπτική ακτινοβολία ενδέχεται να είναι ισχυρώς πολωμένη σε ποσοστό από 5% έως 40%. Η συνεχής ακτινοβολία από την άλλη πλευρά, παρουσιάζει μέγιστο στην περιοχή του μακρινού υπέρυθρου [Far InfraRed (FIR)], όπου η φωτεινότητα μπορεί να φτάσει τα 10⁴⁷ erg/s. Φάσματα διαφορετικών τύπων ενεργών γαλαξιών παρατίθονται στην εικόνα 1.3.

1.2.3 Μοντέλο Ενοποίησης (Unification model)

Το 1985 μια ανακάλυψη από τους Antonucci και Miller (Antonucci et al. 1985) οδήγησε στην εισαγωγή του μοντέλου της ενοποίησης το οποίο παραμένει μέχρι και σήμερα στο επίκεντρο μεγάλου ερευνητικού ενδιαφέροντος. Συγκεκριμένα, ανακάλυψαν ότι το φάσμα ενός γαλαξία Seyfert τύπου 2, του NGC1068, παρουσίαζε πλατιές γραμμές εκπομπής όταν παρατηρούσαν μόνο το πολωμένο φως. Δηλαδή εμφανιζόταν

σαν Seyfert τύπου 1 και όχι 2. Ο πιο απλός μηχανισμός που θα μπορούσε να παράγει ένα τέτοιο φαινόμενο είναι η αντανάκλαση της ακτινοβολίας από κάποιο είδος "καθρέπτη". Αυτός ο καθρέπτης μπορεί να αποτελείται είτε από ηλεκτρόνια είτε από κόκκους σκόνης. Πώς λοιπόν συμβαίνει στο πολωμένο φως να παρατηρούμε πλατιές γραμμές εκπομπής ενώ στο μη πολωμένο λεπτές; Η απάντηση, η οποία αποτελεί και τη βάση του μοντέλου της ενοποίησης, είναι η ύπαρξη ενός μοριακού δίσκου ή τόρου που περικλείει στο εσωτερικό του την περιοχή BLR αλλά όχι και την NLR.

Ο τόρος αυτός πρέπει να αποτελείται από σκόνη έτσι ώστε να είναι ικανός να κρύψει την κεντρική μηχανή παραγωγής ενέργειας και την περιοχή BLR. Επίσης πρέπει να είναι αρκετά πυκνός έτσι ώστε να είναι αδιαφανής στις μαλακές ακτίνες-X (0.5-2 keV), οι οποίες παρατηρούνται στους Seyfert τύπου 1 αλλά όχι και στους τύπου 2. Η μοριακή σύνθεσή του βέβαια θέτει ένα κατώτατο όριο στην απόσταση που μπορεί να έχει από την μελανή οπή, διότι η ισχυρή ακτινοβολία θα αποσυνέθετε ή θα εξάτμιζε τα μόρια. Η απόσταση για να πληρείται η παραπάνω προϋπόθεση είναι της τάξης του ενός parsec. Γενικότερα ο μοριακός τόρος είναι ένα φαινόμενο πολύ μικρής έκτασης.

Η ύπαξξη του μοριακού τόρου αυτομάτως υπονοεί διαφοροποιήσεις στο φασματικό τύπο του AGN ανάλογα με τον προσανατολισμό του σε σχέση με την ευθεία οράσεως (εικόνα 1.4). Σύμφωνα με το μοντέλο της ενοποίησης, εάν η ευθεία οράσεως είναι παράλληλη στον άξονα συμμετρίας του τόρου (face on), αναμένουμε να παρατηρήσουμε ένα αντικείμενο τύπου 1 στο οποίο μπορούμε να δούμε την περιοχή παραγωγής των λεπτών και των πλατιών γραμμών καθώς και την κεντρική μηχανή χωρίς καμία απορρόφηση. Εάν αντιθέτως, ο άξονας συμμετρίας του τόρου είναι κάθετος με την ευθεία οράσεως (edge on), περιμένουμε ένα αντικείμενο στο οποίο η περιεκτικότητα του τόρου σε σκόνη παίζει σημαντικό ρόλο στο παρατηρούμενο φάσμα του. Εάν η περιεκτικότητα του τόρου σε σκόνη είναι μεγάλη, τότε δεν περιμένουμε να δούμε ούτε ακτίνες X, ούτε υπεριώδη ακτινοβολία, ούτε πλατιές γραμμές εκπομπής. Αναμένεται μόνο να παρατηρήσουμε λεπτές γραμμές εκπομπής και να κατατάξουμε το αντικείμενο σαν τύπου 2.

Φυσικά, το παραπάνω μοντέλο μπορεί να προβλέψει το φάσμα του αντικειμένου ανάλογα κάθε φορά με τον διαφορετικού μεγέθους και περιεκτικότητας σε σκόνη τόρο, την δύναμη της κεντρικής μηχανής, την κατανομή των νεφών που παράγουν τις πλατιές και τις λεπτές γραμμές εκπομπής και βεβαίως τον γενικό προσανατολισμό του τόρου σκόνης σε σχέση με την ευθεία οράσεως (εκτός από τις δύο ακραίες περιπτώσεις που περιγράψαμε στην παραπάνω παράγραφο).

Παρά τα όσα ειπώθηκαν παραπάνω, οι αποδείξεις για την ύπαρξη ενός μοριακού τόρου στο κέντρο των ενεργών γαλαξιών είναι πολύ λίγες. Τα τελευταία χρόνια έχουν γίνει πολλές προσπάθειες να αποδειχθεί ή να καταρριφθεί το μοντέλο με διάφορους τρόπους. Πολλές εργασίες επικεντρώνουν την προσοχή τους στην υπέρυθρη ακτινοβολία που αναμένεται να εκπέμπεται από τη σκόνη, αλλά η ανίχνευση της είναι πολύ δύσκολη. Από την άλλη πλευρά, πολλές στατιστικές μελέτες έχουν δείξει σημαντικές διαφορές μεταξύ του περιβάλλοντος των διαφόρων τύπων AGN, οι οποίες μεταφράζονται σε ενδογενείς διαφορές των γαλαξιών που φιλοξενούν τους ενεργούς πυρήνες και όχι σε τυχαίους προσανατολισμούς του τόρου σκόνης. Συγκεκριμένα,

Σχήμα 1.4: Γραφική περιγραφή του μοντέλου ενοποίησης των AGN γαλαξιών.

μελέτες τα τελευταία χρόνια έχουν δείξει ότι οι γαλαξίες τύπου 2 συνήθως προτιμούν πιο πυκνό (κοντινό) περιβάλλον (περισσότερους γειτονικούς γαλαξίες σε μικρή απόσταση) από ότι οι τύπου 1 (π.χ. Dultzin-Hacyan et al. 1999), καθώς και ότι οι ενεργοί πυρήνες τύπου 1 και 2 φιλοξενούνται από διαφορετικού μορφολογικού τύπου γαλαξίες (π.χ. Maiolino et al. 1997).

Επίσης έχουν γίνει σημαντικές προσπάθειες ώστε να αποδειχθεί εάν οι γαλαξίες AGN ενεργοποιούνται από κάποιον εξωτερικό παράγοντα. Υπάρχουν ενδείξεις ότι η παρουσία ενός κοντινού γειτονικού γαλαξία δημιουργεί τις κατάλληλες προϋποθέσεις ώστε να κινηθεί αέριο προς το εσωτερικό του γαλαξία που θα τροφοδοτήσει την μελανή οπή και θα εκκινήσει την ενεργοποίηση του πυρήνα. Όμως, τα αποτελέσματα των σχετικών ερευνών είναι πολλές φορές αντικρουόμενα και εξαρτώμενα από τα δείγματα των γαλαξιών που χρησιμοποιούνται από τους ερευνητές.

Ανακεφαλαιώνοντας όλα τα παραπάνω, μπορούμε να πούμε ότι το μοντέλο της ενοποίησης, παρόλο που εδώ και 20 χρόνια παραμένει αναπόδεικτο και υπάρχουν πολλές ενδείξεις ότι δεν είναι εξολοκλήρου σωστό, είναι γενικότερα αποδεκτό από το σύνολο των ερευνητών. Αυτό είναι λογικό, εφόσον με τη βοήθεια του μπορούμε να εξηγήσουμε πολλές (αλλά όχι όλες) από τις παρατηρούμενες ιδιότητες του φάσματος των ενεργών γαλαξιών, ενώ βάζει μία σχετική τάξη στην ποικιλία και πολυμορφία τους. Απομένει βέβαια να εντοπισθούν τα πιθανά σφάλματα που υπάρχουν σε αυτό το απλοποιημένο μοντέλο και να τελειοποιηθεί, ώστε να είναι ικανό να εξηγήσει όλα τα χαρακτηριστικά του φάσματος του AGN, αλλά και να μας επιτρέψει την έρευνα για την κατανόηση των πραγματικών φυσικών διαφορών που το μοντέλο δεν καλύπτει.

1.2.4 Μελανή οπή και δίσκος επαύξησης.

Στα προηγούμενα κεφάλαια αυτής της εισαγωγής μιλήσαμε για τις ιδιότητες των ενεργών γαλαξιών καθώς και για τις κατηγορίες και υποκατηγορίες στις οποίες χωρίζονται, με βάση πάντα τα παρατηρησιακά φασματικά (συνήθως) δεδομένα. Ποιο φυσικό φαινόμενο όμως είναι ικανό να παράγει τόσο μεγάλες ενέργειες από τόσο μικρούς όγκους; Σήμερα είναι γενικά αποδεκτό ότι η παρουσία των ενεργών γαλαξιακών πυρήνων οφείλεται αποκλειστικά στην παρουσία μίας υπερμαζικής (supermassive) μελανής οπής και ενός δίσκου επαύξησης (accretion disk) ο οποίος περιστρέφεται γύρω από αυτήν.

Η μελανή οπή είναι ένας όγκος, μέσα στον οποίο η τεφάστια πυκνότητα ύλης έχει καμπυλώσει τον χωφόχφονο σε τέτοιο βαθμό ώστε η ηλεκτφομαγνητική ακτινοβολία να μην μποφεί πλέον να διαφύγει εκτός αυτού. Εάν φανταζόμασταν μία ακτίνα φωτός η οποία ξεκινάει από την επιφάνεια του σώματος που δημιουργεί μια μελανή οπή, αυτή δεν θα ακολουθούσε ευθεία τφοχιά κάθετη στην επιφάνεια, αλλά θα καμπυλωνόταν και θα διέγραφε μία τέτοια τροχιά που ποτέ δεν θα επέτφεπε στην ακτίνα να διαφύγει εκτός ευός συγκεκφιμένου όγκου. Η ακτίνα αυτού του όγκου, πέφαν του οποίου δεν διαφεύγει καμία μορφή ακτινοβολίας ονομάζεται ακτίνα Schwarzschild και συμβολίζεται με R_s . Ορίζει επίσης τον ορίζοντα γεγονότων (event horizon) που είναι ο ορίζοντας μέχρι τον οποίο ένας εξωτεφικός παρατηφητής μποφεί να δει κάποιο γεγονός.

Ποιο όμως είναι το μέγεθος μιας μελανής οπής; Ο υπολογισμός της ακτίνας μπορεί να γίνει στα πλαίσια της κλασικής μηχανικής θεωρώντας ότι είναι αυτή που, για δεδομένη μάζα M, η ταχύτητα διαφυγής ισούται μα την ταχύτητα του φωτός. Ο αναλυτικός υπολογισμός αυτής της ακτίνας μας δίνει τα ίδια αποτελέσματα και δεν είναι αναγκαίο να καταφύγουμε σε αυτόν. Κατ΄ αρχήν εξισώνουμε το βαρυτικό δυναμικό ενός σώματος μάζας M με την κινητική ενέργεια ενός σώματος μάζας m που προσπαθεί να διαφύγει από αυτό:

$$\frac{1}{2}mv^2 = \frac{GMm}{R}$$

Για ένα φωτόνιο μπορούμε να αντικαταστήσουμε την ταχύτητα v με την ταχύτητα του φωτός c και έχουμε:

$$\frac{1}{2}mc^2 = \frac{GMm}{R_s}$$

και συνεπώς η ακτίνα Schwarzschild δίνεται από την σχέση:

$$R_s = \frac{2GM}{c^2}$$

Χρησιμοποιώντας την παραπάνω σχέση εύκολα μπορούμε να διαπιστώσουμε ότι για $M = 1 M_{\odot}$ η ακτίνα Schwarzschild είναι $R_s = 3$ km, ενώ για μελανή οπή όγκου $10^8 M_{\odot}$ είναι $R_s = 3 \times 10^8$ km $\cong 2$ AU. Το αποτέλεσμα αυτό είναι εντυπωσιακό από την άποψη ότι μία υπερμαζική μελανή οπή θα χώραγε εύκολα στο εσωτερικό του ηλιακού μας συστήματος.

Κεφάλαιο 1. Εισαγωγή

Παρόλο λοιπόν που η μελανή οπή δεν ακτινοβολεί καθόλου και οι συνθήκες που επικρατούν στο εσωτερικό της παραμένουν άγνωστες, διατηρεί κάποια βασικά φυσικά χαρακτηριστικά: τη στροφορμή, τη βαρυτική μάζα και το ηλεκτρικό φορτίο. Τα δύο πρώτα παίζουν ουσιαστικό ρόλο στην εμφάνιση των ενεργών γαλαξιακών πυρήνων. Στο εξωτερικό της μελανής οπής ο χώρος είναι καμπυλωμένος και τα αντικείμενα που διέρχονται από εκεί θα ακολουθούν καμπυλωμένες τροχιές λόγω του ισχυρότατου βαρυτικού πεδίου. Τα σωματίδια αυτά μπορεί να παγιδευτούν από τη μελανή οπή και τελικά να καταρρεύσουν στο εσωτερικό της. Κατά τη διάρκεια αυτής της διαδικασίας το βαρυτικό πεδίο μετατρέπει δυναμική ενέργεια σε κινητική. Στην επόμενη παράγραφο θα μιλήσουμε επιγραμματικά για την δημιουργία του λεγόμενου δίσκου επαύξησης καθώς η αναλυτική περιγραφή του και οι φυσικές διεργασίες που συμβαίνουν στο εσωτερικό του είναι εξαιρετικά πολύπλοκες και ξεφεύγουν από τα όρια αυτής της εργασίας.

Όπως προαναφέραμε, το βαρυτικό πεδίο της μελανής οπής θα προσελκύσει νέφη αερίου στο κεντρικό 1 pc του AGN από όλες τις κατευθύνσεις. Τελικά, η πυκνότητα σε νέφη θα είναι τόσο μεγάλη στην περιοχή, που θα αρχίσουν να συγκρούονται μεταξύ τους και να χάνουν κινητική ενέργεια με ταυτόχρονη μετατροπή της σε θερμική ενέργεια λόγω τριβής. Με τη συνεχή απώλεια ταχύτητας τα σωματίδια του αερίου δεν έχουν πλέον την απαιτούμενη ενέργεια για να διαφύγουν από το βαρυτικό πεδίο και θα παραμείνουν παγιδευμένα από αυτό, πιθανώς σε ελλειπτικές τροχιές μεγάλης εκκεντρότητας. Υποθέτουμε ότι το αέριο αρχικά καταλάμβανε έναν τεράστιο περιστρεφόμενο όγκο. Όσο η διαδικασία της σύγκρουσης των νεφών συνεχίζεται, οι τροχιές των σωματιδίων γίνονται πιο κυκλικές και η περιοχή που καταλαμβάνουν πιο πεπλατυσμένη. Η στροφορμή διατηρείται καθ'όλη τη διάρκεια με την κάθετη συνιστώσα να εξουδετερώνεται με τη μετατροπή της κινητικής ενέργειας σε δυναμική και τελικά σε θερμική. Στην εικόνα 1.5 παραθέτουμε μία καλλιτεχνική απεικόνιση ενός δίσκου επαύξησης γύρω από τη μελανή οπή.

Τώρα που περιγράψαμε, εν συντομία, τα βασικά χαρακτηριστικά των μελανών οπών και των δίσκων επαύξησης είμαστε σε θέση να περιγράψουμε επίσης και το μηχανισμό τροφοδοσίας των πρώτων από τους δεύτερους και την παραγωγή ενέργειας από τα AGN. Ο εμφανής τρόπος, όπως έχουμε ήδη σχιαγραφήσει παραπάνω, είναι η απελευθέρωση βαρυτικής δυναμικής ενέργειας μέσω της αλληλεπίδρασης της οπής με το δίσκο επαύξησης. Η αργή πτωτική κίνηση της μάζας θερμαίνει το αέριο λόγω της τριβής το οποίο στη συνέχεια ακτινοβολεί. Φυσικά η ακτινοβολία των AGN και οι διάφορες γραμμές εκπομπής περιγράφουν φαινόμενα και διεργασίες ακτινοβολίας, όπως το σύγχροτρον, Bremsstrahlung, ακτινοβολία Compton, μέλανος σώματος κ.τ.λ., που δεν είναι του ενδιαφέροντος της παρούσης διατριβής. Παρόλα αυτά, η βασική παράμετρος είναι η κεντρική μάζα και κάποια ποσότητα μάζας η οποία να έλκεται προς τη μελανή οπή (μάζα επαύξησης). Το κλειδί που συνδέει τα παραπάνω είναι η ικανότητα ενεργειακής μετατροπής της ελκυόμενης μάζας, δηλαδή η ικανότητα της να ακτινοβολεί. Η γνώση αυτού θα μας προσδιορίσει ποιος είναι ο ρυθμός επαύξησης της μελανής οπής έτσι ώστε να μας δώσει την παρατηρούμενη φωτεινότητα. Υποθέτουμε ότι αέριο, συμπεριλαμβανομένων και αστέρων, αποτελεί την ελκυόμενη μάζα.

Σχήμα 1.5: Καλλιτεχνική απεικόνιση ενός δίσκου επαύξησης.

Σήμερα πιστεύεται ότι στους ενεργούς γαλαξιακούς πυρήνες, μέχρι και το 10% της μάζας ηρεμίας των σωματιδίων μπορεί να μετατραπεί σε ενέργεια. Για να καταλάβουμε πόσο μεγάλο είναι αυτό το ποσοστό, αρκεί να υπενθυμίσουμε ότι το αντίστοιχο στους αστέρες, λόγω θερμοπυρηνικών αντιδράσεων, είναι περίπου 0,7%. Ας υποθέσουμε λοιπόν, ότι η ικανότητα ενεργειακής μετατροπής (energy conversion efficiency) είναι Q = 5%. Για ένα QSO φωτεινότητας $10^{12}L_{\odot}$ (ορίζεται ως Ηλιακή φωτεινότητα L_{\odot} =3.846×10²⁶ W), ο ρυθμός επαύξησης \dot{m}_{acc} (accretion rate) δίνεται από τον τύπο:

$$\dot{m}_{acc} = \frac{10^{12} L_{\odot}}{Qc^2} = 8.44 \times 10^{22} \text{kg/s} = 1.35 M_{\odot} \cdot \text{y}^{-1}$$

όπου M_{\odot} =1.989× 10³⁰ kg, η Ηλιακή μάζα. Ο ουθμός αυτός μπορεί αρχικά να φαίνεται πολύ αργός, αλλά πρέπει να σκεφτούμε ότι ακόμα και αν υπάρχει στην κεντρική περιοχή της μελανής οπής του ενεργού γαλαξία μάζα ~ 10¹⁰ M_{\odot} η διάρκεια ζωής του QSO είναι περιορισμένη σε ~ 10⁹ y, εάν ακτινοβολεί σταθερά και δεν υπάρχει ανανέωση μάζας. Τα παραπάνω περιπλέκονται ακόμα περισσότερο αν προσθέσουμε και το γεγονός ότι όσο αυξάνεται η μάζα της μελανής οπής αυξάνεται και ο ρυθμός επαύξησης. Υπάρχει όμως και ένα ανώτατο όριο στο οποίο μπορεί να φτάσει που ονομάζεται όριο Eddington. Σε αυτό το σημείο, η πίεση της ηλεκτρομαγνητικής ακτινοβολίας που διαφεύγει προς τα έξω ισοσταθμίζει την βαρυτική έλξη, επέρχεται ισορροπία και ο ρυθμός επαύξησης σταθεροποιείται.

Κλείνοντας πρέπει να πούμε ότι δεν είναι αχόμα γνωστή επαχριβώς η διαδικασία τροφοδοσίας της κεντρικής περιοχής του ενεργού γαλαξία και η συνολική διάρκεια του φαινομένου. Αρκετές πρόσφατες μελέτες έχουν υποστηρίξει ότι τα AGN είναι βραχύβια, ενώ άλλες ότι το φαινόμενο είναι επαναλαμβανόμενο και μπορεί να συμβαίνει για σχετικά μικρό χρονικό διάστημα όταν υπάρχουν οι συγκεκριμένες

Κεφάλαιο 1. Εισαγωγή

συνθήκες. Πολλοί επίσης υποστηρίζουν ότι για την ενεργοποίηση του πυρήνα ενός γαλαξία πρέπει να προηγηθεί κάποια αλληλεπίδραση με άλλον γαλαξία, η οποία θα διαταράξει βαρυτικά την ισορροπία αέριων μαζών και τελικά θα οδηγήσει αέριο στην περιοχή του πυρήνα. Για να αποδειχθεί όμως κάτι τέτοιο πρέπει να γίνουν πολύ λεπτομερείς παρατηρήσεις του εγγύς περιβάλλοντος και της μορφολογίας των αλληλεπιδρώντων γαλαξιών, χρησιμοποιώντας μεγάλο δείγμα, εφόσον το συνολικό φαινόμενο της ενεργοποίησης ενδέχεται να είναι χρονικά πολύ σύντομο και όχι πάντα παρατηρήσιμο. Στα πλαίσια αυτής της κατεύθυνσης βρίσκεται η μελέτη που πραγματοποιούμε στην παρούσα διατριβή.

Κεφάλαιο 2

Δεδομένα και μεθοδολογία

2.1 Δείγματα γαλαξιών.

2.1.1 Seyfert και γαλαξίες ελέγχου.

Τα δείγματα των Γαλαξιών τύπου Seyfert έχουν συνταχθεί από τον κατάλογο των Lipovetsky, Neizvetny & Neizvetnaya (1988). Αποτελούνται από 72 Seyfert γαλαξίες τύπου 1 με ερυθρομετατοπίσεις 0.007 $\leq z \leq 0.036$ και 69 γαλαξίες Seyfert τύπου 2 με ερυθρομετατοπίσεις 0.004 $\leq z \leq 0.020$. Περιέχουν μόνο αντικείμενα με μεγάλο γαλαξιακό πλάτος, έτσι ώστε να αποφευχθεί η επίδραση της απορρόφησης από το Γαλαξία στην ένταση της ακτινοβολίας τους και η ύπαρξη μεγάλου πλήθους αστέρων στο εγγυς δισδιάστατο περιβάλλον τους. Η επιλογή των συγκεκριμένων δειγμάτων είχε γίνει ήδη στην εργασία των Dultzin et al. (1999, από εδώ και στο εξής DH99).

Επίσης χρησιμοποιούμε δύο δείγματα ανενεργών γαλαξιών έτσι ώστε να υπάρ χει κάποιο μέτρο σύγκρισης των αποτελεσμάτων μας. Στο DH99 οι γαλαξίες που αποτελούν αυτούς τους δύο καταλόγους έχουν επιλεγεί κατά τέτοιο τρόπο ώστε να αναπαράγουν όλα τα χαρακτηριστικά των ενεργών γαλαξιών εκτός από την ύπαρξη AGN. Συγκεκριμένα οι κατάλογοι ελέγχου συντέθηκαν από τον κατάλογο του CfA2 έτσι ώστε να αναπαράγουν τις κατανομές των ερυθρομεταθέσεων, της μορφολογίας και των διαμέτρων των γαλαξιών που φιλοξενούν ενεργούς πυρήνες. Χρησιμοποιούνται οι διάμετροι αντί των μεγεθών, γιατί οι ενεργοί πυρήνες τύπου Seyfert φιλοξενούνται κυρίως από γιγαντιαίους γαλαξίες και είναι συνήθως αρκετά πιο λαμπροί από τους "κανονικούς" γαλαξίες, ακριβώς λόγω της "ενεργότητας" του πυρήνα τους. Η χρήση λοιπόν των μεγεθών θα εισήγαγε συστηματικά σφάλματα στα αποτέλεσμα μας (π.χ. de Robertis, Hayhoe, Yee 1998a; de Robertis et al. 1998b).

Ανακεφαλαιώνοντας τα παφαπάνω, αναφέφουμε ότι η μόνη διαφοφά μεταξύ των γαλαξιών Seyfert και των γαλαξιών ελέγχου είναι ότι οι πφώτοι φιλοξενούν ενεργούς γαλαξιακούς πυφήνες, ενώ οι δεύτεφοι όχι. Οφείλουμε να τονίσουμε τη σημασία της πφοηγούμενης πφότασης, η οποία έγκειται στο γεγονός ότι μας παφέχει τη βεβαιότητα ότι οποιοδήποτε αποτέλεσμά μας σχετικό με το πεφιβάλλον των ενεφγών γαλαξιών τύπου Seyfert, σχετίζεται εξολοκλήφου με την ύπαφξη διαφοφών στους ενεφγούς πυφήνες και όχι με πιθανά συστηματικά σφάλματα στην επιλογή των γαλαξιών ή σε μοφφολογικές διαφοφές των γαλαξιών που τους φιλοξενούν.

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

Στο σημείο αυτό πρέπει να αναφέρουμε ότι στις περιοχές που καλύπτουν οι κατάλογοι SSRS και CfA2 (περισσότερες πληροφορίες στο κεφάλαιο §2.3.1) βρέθηκε μόνο ένα υποσύνολο των γαλαξιών που χρησιμοποιήθηκαν για τη δισδιάστατη μελέτη στο DH99. Μετά από επανέλεγχο και βελτίωση των φασματικών τους τύπων, τα δείγματά μας περιλαμβάνουν 48 γαλαξίες Sy1, 56 γαλαξίες Sy2, 47 γαλαξίες ελέγχου των Sy1 και 41 γαλαξίες ελέγχου των Sy2. Για να ελέγξουμε αν αυτά τα υποσύνολα έχουν τις ίδιες στατιστικές ιδιότητες με τα αρχικά, δηλαδή αν οι Seyfert γαλαξίες έχουν τις ίδιες κατανομές ερυθρομεταθέσεων, διαμέτρων και μορφολογικού τύπου με τους αντίστοιχούς γαλαξίες ελέγχου τους, εφαρμόσαμε το τεστ Kolmogorov-Smirnov (§2.5.3). Με αυτό τον τρόπο επιβεβαιώσαμε τελικά ότι η αρχική υπόθεση μας, ότι τα υποσύνολα είναι ανάλογων ιδιοτήτων με τα αρχικά, δεν μπορεί να απορριφθεί με σημαντικά στατιστική βεβαιότητα. Όλοι οι ενεργοί γαλαξίες που βρίσκονται εντός των ορίων των CfA2 και SSRS παρατίθενται στον πίνακα Ι (παράρτημα D) μαζί με τις συντεταγμένες και τα βασικά χαρακτηριστικά τους.

2.1.2 Λαμπροί υπέρυθροι γαλαξίες (BIRG) και γαλαξίες ελέγχου.

Ο κατάλογος των λαμπρών Υπέφυθρων Γαλαξιών (BIRG) του IRAS (Infrared Astronomical Satellite, IRAS) (Sanders et al. 2003) που χρησιμοποιούμε, αποτελείται από 87 γαλαξίες με εφυθρομεταθέσεις 0.008 $\leq z \leq$ 0.018 και έχει συνταχθεί από τους Soifer et al. (1989) για το βόρειο ημισφαίριο και από τους Sanders et al. (1995) για το νότιο. Περιλαμβάνει μόνο γαλαξίες με σχετικά μεγάλα γαλαξιακά πλάτη ($|b| \geq 30^{\circ}$) έτσι ώστε να αποφευχθεί η μεγάλη απορρόφηση και σύγχυση με αστέρια του γαλαξία μας. Όλα τα αντικείμενα έχουν υπέρυθρη φωτεινότητα L_{FIR} τέτοια ώστε $10^{10}L_{\odot} \leq L_{FIR} \leq 10^{12}L_{\odot}$. Ο κατάλογος είναι οριοθετημένος βάση του όγκου (volume-limited) και ένα V/V_{max} τεστ δίνει 0.47 ± 0.05. Εφόσον η μελέτη των γαλαξιών BIRG είναι πλήρης σε υψηλό βαθμό, το ίδιο αναμένεται και από τον συγκεκριμένο κατάλογο (Krongold et al. 2002). Επιπρόσθετα, έχουμε βελτιώσει τον κατάλογο διορθώνοντας την ροή στο υπέρυθρο με τη χρήση της αναθεωρημένης έκδοσης του γαλαξιακού καταλόγου του Υπέρυθρου Αστρονομικού δορυφόρου και για κοντινούς αλληλεπιδρώντες γαλαξίες έχουμε χρησιμοποιήσει την διορθωμένη υπέρυθρη ροή από τη σχετική μελέτη των Surace et al. (2004).

Οι γαλαξίες ελέγχου που χρησιμοποιούμε προέρχονται από τον κατάλογο των Krongold et al. (2002) ο οποίος έχει συνταχθεί κατά τέτοιο τρόπο ώστε να αναπαράγει όλα τα κύρια χαρακτηριστικά των BIRG γαλαξιών εκτός από την υπέρυθρη φωτεινότητα. Συγκεκριμένα, οι γαλαξίες ελέγχου έχουν επιλεγεί από τον κατάλογο γαλαξιών του CfA2 έτσι ώστε να αναπαράγουν με όσο το δυνατόν μεγαλύτερη πιστότητα τις κατανομές των ερυθρομεταθέσεων, των μορφολογικών τύπων και των διαμέτρων του ανάλογου υπέρυθρου BIRG καταλόγου. Με άλλα λόγια, η επιλογή των γαλαξιών που απαρτίζουν και τους δύο καταλόγους έγινε ακριβώς με τα ίδια κριτήρια, με τη μόνη διαφορά την υπέρυθρη φωτεινότητα. Αυτό είναι πολύ σημαντικό εάν θέλουμε να διαπιστώσουμε αν οποιαδήποτε διαφορά μεταξύ του περιβάλλοντος των δύο διαφορετικών καταλόγων οφείλεται αποκλειστικά στο μηχανισμό που παράγει την παρατηρούμενη ισχυρή υπέρυθρη ακτινοβολία και όχι σε κάποιες πιθανές διαφορές των ίδιων

των γαλαξιών (host galaxies) ή σε άλλα συστηματικά σφάλματα λόγω της πιθανής μη αντιπροσωπευτικής επιλογής των καταλόγων.

Πριν κλείσουμε την παρούσα ενότητα, πρέπει να αναφέρουμε ότι στις περιοχές που καλύπτουν οι κατάλογοι SSRS και CfA2 (περισσότερες πληροφορίες στο κεφάλαιο §2.3.1) βρέθηκε μόνο ένα υποσύνολο των γαλαξιών από το αρχικό δείγμα των Krongold et al. (2002). Συγκεκριμένα 76 BIRG γαλαξίες και 61 γαλαξίες ελέγχου. Για να ελέγξουμε αν αυτά τα υποσύνολα έχουν τις ίδιες ιδιότητες με τα αρχιχά, δηλαδή αν οι BIRG γαλαξίες έχουν τις ίδιες κατανομές ερυθρομεταθέσεων, διαμέτρων και μορφολογικού τύπου με τους αντίστοιχούς γαλαξίες ελέγχου τους, εφαρμόσαμε το τεστ Kolmogorov-Smirnov (§2.5.3), όπως κάναμε και στο §2.1.1. Με αυτό τον τρόπο επιβεβαιώσαμε ότι η αρχική υπόθεση μας ότι τα υποσύνολα είναι ανάλογων ιδιοτήτων με τα αρχικά δεν μπορεί να απορριφθεί με σημαντικά στατιστική βεβαιότητα. Στον πίνακα ΙΙΙ (παράρτημα D) παρουσιάζονται τα ονόματα, οι ουρανογραφικές συντεταγμένες και τα χαρακτηριστικά των BIRG γαλαξίων του δείγματός μας. Για να κατηγοριοποιήσουμε τους φασματικούς τύπους τους (Sy1, Sy2, SB, LINER ή ανενεργός) χρησιμοποιήσαμε πολλές προηγούμενες μελέτες όπως: Coziol et al. 1998, Veilleux et al. 1997, Ho et al. 1995, Corbett et al. 2003, de Grijp et al. 1987 και φασματοσκοπικά δεδομένα του SDSS (Sloan Digital Sky Survey), όπου ήταν διαθέσιμα.

2.1.3 Σμήνη γαλαξιών.

Τα σμήνη γαλαξιών, που χρησιμοποιούμε στην ανάλυση του τέταρτου κεφαλαίου, έχουν επιλεγεί κατά τέτοιο τρόπο ώστε να πληρούν πολλαπλές συνθήκες:

(a) Ανήπουν στον πατάλογο των πλούσιων σμηνών γαλαξιών ABELL (§2.3.4), ώστε να είμαστε βέβαιοι για το μεγάλο αριθμό των μελών τους.

(β) Ανήπουν στα πεδία που έχει παρατηρήσει ο δορυφόρος XMM-Newton, ώστε να είναι εφιπτή η ανίχνευση των ενεργών πυρήνων μέσω της ανάλυσης των δεδομένων απτινών-Χ.

(γ) Οι παρατηρήσεις τους στις ακτίνες-Χ έχουν χρόνο έκθεσης, σε όλους τους ανιχνευτές του XMM-Newton χωριστά (§2.3.3), μεγαλύτερο των 10 ksec, ώστε να έχουμε ικανοποιητικό όριο ροής (και κατ'επέκταση ικανό αριθμό σημειακών πηγών στα πεδία τους).

(δ) Η ακτινοβολία X του σμήνους, στο κέντρο του πεδίου, δεν είναι τόσο ισχυρή που να κάνει αδύνατη την ανίχνευση σημειακών πηγών σε απόσταση μεγαλύτερη των 0.5 h^{-1} Mpc από το κέντρο, στην χειρότερη περίπτωση.

(ε) Ανήπουν στην περιοχή της βάσης δεδομένων SDSS, ώστε να έχουμε πρόσβαση σε οπτιπά δεδομένα.

Όταν ξεκίνησε αυτή η μελέτη το 2006, βρέθηκε να πληρούν τις παραπάνω συνθήκες 16 σμήνη γαλαξιών, με ερυθρομεταθέσεις $0.034 \le z \le 0.279$. Ο αριθμός των μελών τους που έχει καταμετρηθεί στις εργασίες Abell et al. (1958) και Abell et al. (1989) ποικίλει από 38 έως 228. Τα χαρακτηριστικά τους, καθώς και τα αποτελέσματα της περαιτέρω μελέτης τους έχουν καταχωρηθεί στον πίνακα VI (παράρτημα D).

2.2 Οπτικές παρατηρήσεις.

2.2.1 Faint Object Spectrograph and Camera (LFOSC)

Για την οπτική φασματοσκοπία, με σκοπό την εξαγωγή των ερυθρομεταθέσεων των γειτόνων των Seyfert και BIRG γαλαξιών, κατά τη διάρκεια της πρώτης φάσης του διδαχτοριχού, χρησιμοποιήσαμε τον "Φασματογράφο και Κάμερα Αμυδρών Αντικειμένων" (Faint Object Spectrograph and Camera, LFOSC) (Zickgraf et al. 1977) στο 2.1 μέτρων τηλεσκόπιο Guillermo Haro στην Cananea του Μεξικού (εικόνα 2.1), το οποίο ανήκει στο "Εθνικό Ινστιτούτο Αστροφυσικής, Οπτικής και Ηλεκτρονικής" (Instituto National de Astrofisica, Optica y Electronica, INAOE). Η κάμερα είναι εξοπλισμένη με τον CCD ανιχνευτή EEV P8603 (385×578 εικονοστοιχεία, 22 μm μέγεθος εικονοστοιχείου). Το πεδίο στον ουρανό που καλύπτεται από το συγκεκριμένο όργανο είναι 10×6 . Ο φασματογράφος διαθέτει δύο grism, G1 και G2, με γραμμικές διασπορές 250 Angstrom/mm και 360 Angstrom/mm που καλύπτουν φασματική περιοχή από 4000 έως 7200 Angstrom και από 4200 έως 9000 Angstrom αντίστοιχα. Για τους σχοπούς μας χρησιμοποιήσαμε το G3 με πλάτος σχισμής 2.5". Με αυτές τις ρυθμίσεις και για ερυθρομεταθέσεις μέχρι $z \sim 0.3$, στα φάσματα των γαλαξιών, εμφανίζονται οι γραμμές απορρόφησης NaI, MgI, FeI, Ha, ενώ σε αυτά των ενεργών γαλαξιών, οι γραμμές εκπομπής $H\alpha$, $H\beta$, [O III], [O I], [N II] και οι δύο γραμμές [S II], όπως μπορούμε να δούμε στο σχήμα 1.1. Η ανάλυση των δεδομένων έγινε με το πακέτο λογισμικού IRAF και περιγράφεται αναλυτικά στο παράρτημα Α.

Σχήμα 2.1: Το 2.1 μέτρων τηλεσκόπιο Guillermo Haro.

2.2.2 Boller & Chivens Spectrograph

Για την οπτική φασματοσκοπία, με σκοπό την κατάταξη των γειτόνων των Sevfert και BIRG γαλαξιών, κατά τη διάρκεια της δεύτερης φάσης του διδακτορικού, χρησιμοποιήσαμε τον φασματογράφο Boller & Chivens στο 2.1 μέτρων τηλεσχόπιο στο "Εθνικό Αστεροσκοπείο του Μεξικού" στο San Pedro Martir (OAN-SPM, εικόνα 2.2). Το πεδίο του στον ουρανό είναι 5 \times 5. Ο φασματογράφος κάνει χρήση ενός CCD SITe3 (1024×1024 εικονοστοιχεία, 24 μm μέγεθος εικονοστοιχείου). Το μέγιστο μήκος της σχισμής είναι 5, ενώ το ελάχιστο πλάτος της 50 μm. Υιοθετήθηκαν τέτοιες ουθμίσεις του φασματογράφου έτσι ώστε να καλύπτεται φασματική περιοχή από 4000 έως 8000 Angstrom, με ανάλυση $R \sim 800$. Οι παρατηρήσεις πραγματοποιήθηχαν χάτω από φωτομετοικές συνθήκες. Όλα τα φάσματα επιτεύχθηκαν με εύοος σχισμής του φασματογράφου 2.5". Στη συγκεκριμένη περιοχή, στα φάσματα των γαλαξιών εμφανίζονται οι γραμμές απορρόφησης NaI, MgI, FeI, Ha, ενώ σε αυτά των ενεργών γαλαξιών οι γραμμές εκπομπής $H\alpha, H\beta, [O III], [O I], [N II]$ και οι δύο γραμμές [S II]. Φάσματο-φωτομετρικοί αστέρες παρατηρήθηκαν κάθε βράδυ. Η ανάλυση των δεδομένων έγινε με το πακέτο λογισμικού IRAF και περιγράφεται αναλυτικά στο παράρτημα Α, στο τέλος της διατριβής.

Σχήμα 2.2: Το 2.1 μέτρων τηλεσκόπιο OAN-SPM.

2.3 Βάσεις Δεδομένων

2.3.1 Κατάλογοι γαλαξιών SSRS και CfA2

Για να μελετήσουμε το εγγύς χαθώς και το μεγάλης κλίμακας πεφιβάλλον γύφω από τους ενεφγούς αλλά και τους κανονικούς γαλαξίες που απαφτίζουν τα δείγματά μας, χφησιμοποιούμε τους γαλαξιακούς καταλόγους SSRS και CfA2 οι οποίοι καλύπτουν μία μεγάλη στεφεά γωνία του ουφανού. Παφόλο που αυτοί οι κατάλογοι συντάχθηκαν πφος το τέλος της δεκαετίας του '80 και τις αφχές του '90, αποτελούν ακόμα σημαντικές βάσεις δεδομένων για την μελέτη των γαλαξιών και του πεφιβάλλοντός τους, ιδιαίτεφα στο κοντινό μας σύμπαν. Στην παφακάτω παφάγφαφο πεφιγφάφουμε εν συντομία τα βασικά χαφακτηφιστικά αυτών των καταλόγων.

Σχήμα 2.3: Κατανομή γαλαξιών του CfA2 στο βόρειο ημισφαίριο.

Η βάση δεδομένων του CfA2 περιέχει περίπου 18000 ερυθρομεταθέσεις γαλαξιών του βορείου ημισφαιρίου (σχήμα 2.3) μεγέθους μέχρι $m_B = 15.5$ (Huchra et al. 1990). Το σύστημα μέτρησης των μεγεθών που χρησιμοποιείται είναι μία μίξη του

παλαιότερου συστήματος του Zwicky και του πιο ακριβούς RC1 B(0) (RC1 B(0) magnitudes). Δεν επιχειρούμε να μεταφράσουμε αυτά τα μεγέθη σε ένα κοινό σύστημα, εφόσον αυτό προϋποθέτει ακριβή γνώση του μορφολογικού τύπου και του μεγέθους κάθε γαλαξία και επιπλέον πολλές φορές το σφάλμα στην ερυθρομετάθεση είναι μεγαλύτερο από αυτήν την διασπορά.

Σχήμα 2.4: Ισοεπιφανειακή κατανομή των Seyfert γαλαξιών των δειγμάτων μας (κόκκινα σημεία x) στους καταλόγους CfA2 και SSRS

Ο κατάλογος SSRS (da Costa et al. 1998) περιέχει ερυθρομεταθέσεις, μεγέθη και μορφολογικές κατηγοριοποιήσεις για περίπου 5400 γαλαξίες σε δύο περιοχές του ουρανού, που καλύπτουν συνολικά στερεά γωνία περίπου 1.70 steradians στο νότιο ημισφαίριο και είναι πάνω από 99% πλήρης μέχρι μέγεθος $m_B = 15.5$. Οι θέσεις των γαλαξιών έχουν ακρίβεια 1" της μοίρας, ενώ τα φωτομετρικά μεγέθη με ακρίβεια 0.3 mag. Η ακρίβεια της ακτινικής ταχύτητας είναι της τάξης των ~ 40 km/s.

Η χρήση των δύο καταλόγων CfA2 και SSRS, που καλύπτουν μεγάλο τμήμα του

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

ουρανού και στα δύο ημισφαίρια, μας επιτρέπει να διεξάγουμε τρισδιάστατη μελέτη του περιβάλλοντος των ενεργών γαλαξιών, αφού περιλαμβάνουν φασματοσκοπικές ερυθρομεταθέσεις για συνολικά 23400 αντικείμενα. Η κατανομή των ενεργών γαλαξιών των δειγμάτων μας στην επιφάνεια που καλύπτουν οι κατάλογοι CfA2 και SSRS παρουσιάζεται στο σχήμα 2.4. Δυστυχώς και οι δύο κατάλογοι περιορίζονται σε σχετικά λαμπρούς γαλαξίες με φαινόμενο μέγεθος μικρότερο του 15.5 και αυτό προσθέτει κάποιους περιορισμούς στην μελέτη μας, οι οποίοι αναλύονται σε επόμενο κεφάλαιο και άρονται με τη βοήθεια των δικών μας φασματοσκοπικών παρατηρήσεων σημαντικά αμυδρότερων γαλαξιών.

2.3.2 Αστρονομικός δορυφόρος Υπερύθρου IRAS.

Ο δορυφόρος IRAS ήταν ο πρώτος που πραγματοποίησε χαρτογράφηση ολόκληρου του ουρανού σε υπέρυθρα μήκη κύματος. Χαρτογράφησε το 96% του ουρανού 4 φορές, στα 12, 25, 60 και 100μm. Ανακάλυψε 350000 πηγές, πολλές από τις οποίες είναι ακόμα μη ταυτοποιημένες. 75000 περίπου από αυτές πιστεύεται ότι είναι γαλαξίες Starburst. Πολλές επίσης, είναι κανονικοί αστέρες περιβαλλόμενοι από σκόνη, πιθανώς σε φάση πλανητικού σχηματισμού.

Σχήμα 2.5: Καλλιτεχνική απεικόνιση του δοουφόοου IRAS (credit NASA)

Η αναθεωφημένη έχδοση του γαλαξιαχού χαταλόγου του Αστρονομικού δορυφόρου Υπερύθρου (Sanders et al. 2003) περιλαμβάνει τους γαλαξίες με συνολική πυχνότητα ροής στα 60μm μεγαλύτερη από 5.24 Jy $(1Jy = 10^{-23} \frac{\text{erg}}{\text{sec-cm}^2 \cdot \text{Hz}})$. Ο συγχεχριμένος χατάλογος είναι αποτέλεσμα μιας πλήρους και οριοθετημένης σε ροή (flux-limited) παρατηρησιαχής επισχόπησης (survey) του δορυφόρου IRAS και συντάχθηχε μετά από την τελική βαθμονόμηση της αρχειοθήχης (archive) "IRAS Level 1". Ο κατάλογος αυτός περιλαμβάνει πολύ πιο αχριβείς και συνεπείς μετρήσεις της ροής των αντικειμένων με εκτεταμένη εκπομπή ακτινοβολίας. Επιπλέον, η υπέρυθρη ροή περισσότερων από 100 πηγών του καταλόγου υπολογίσθηχαν εκ νέου και από την υψηλής ανάλυσης μέθοδο επεξεργασίας (HIRES) του IRAS, η οποία μας επέτρεψε την διάχριση της ροής του χάθε μέλους χωριστά πολύ κοντινών γαλαξιαχών ζευγαριών (Surace et al 2004). Αυτό μας προσέφερε την πιο αξιόπιστη βάση δεδομένων υπέρυθρων γαλαξιών που έγινε ποτέ και αποδείχθηχε μείζονος σημασίας για στατιστικές μελέτες όπως η παρούσα.

2.3.3 Δορυφόρος ακτινών-Χ XMM-Newton.

Εφόσον η ατμόσφαιρα εμποδίζει τις ακτίνες-Χ να φτάσουν στην επιφάνεια της γης, μόνο ένα τηλεσκόπιο στο διάστημα μπορεί να ανιχνεύσει πηγές σε αυτή την περιοχή του ηλεκτρομαγνητικού φάσματος. Ο δορυφόρος XMM-Newton, της Ευρωπαϊκής Εταιρείας Διαστήματος (European Space Agency, ESA), εκτοξεύτηκε στις 10 Δεκεμβρίου του 1999. Μεταφέρει τρία τηλεσκόπια ακτινών-Χ με μεγάλη συλλεκτική επιφάνεια και την ικανότητα να πραγματοποιεί μακροχρόνιες αδιάλειπτες παρατηρήσεις. Μια καλλιτεχνική απεικόνιση του δορυφόρου παρατίθεται στην εικόνα 2.6.

Ο δορυφόρος φέρει επίσης τρεις CCD κάμερες, που αποτελούν την "Ευρωπαϊκή Φωτονική Φωτογραφική Κάμερα" (European Photon Imaging Camera, EPIC). Δύο από τις συστοιχίες CCD ονομάζονται "MOS" (Metal Oxide Semi-conductor) και είναι εγκατεστημένες στα δύο τηλεσκόπια ακτινών-Χ που φέρουν επίσης φασματογράφους. Λόγω αυτού του σχεδιασμού, μόνο περίπου το 44% της αρχικής ακτινοβολίας φτάνει τα MOS CCD, ενώ η υπόλοιπη κατευθύνεται στους φασματογράφους. Το τρίτο τηλεσκόπιο εστιάζει απευθείας σε μια συστοιχία CCD, η οποία αναφέρεται συνήθως ως "pn" CCD.

Σχήμα 2.6: Καλλιτεχνική απεικόνιση του δοουφόρου XMM-Newton (credit-ESA).

Η βάση δεδομένων του XMM περιέχει πληθώρα παρατηρήσεων, προσβάσιμες από ολόκληρη την επιστημονική κοινότητα. Προσφέρονται είτε σε επεξεργασμένη μορφή από το λογισμικό επεξεργασίας του XMM, είτε σε μη επεξεργασμένα αρχεία. Οι επιστημονικές δημοσιεύσεις που κάνουν χρήση των δεδομένων ανέρχονται ήδη στις 2000.

2.3.4 Κατάλογος σμηνών γαλαξιών ABELL.

Ο κατάλογος πλούσιων σμηνών γαλαξιών δημοσιεύτηκε το 1958 από τον Abell, περιλαμβάνει 2712 σμήνη και αποτελούσε μέρος της διδακτορικής του διατριβής. Ο

εντοπισμός τους έγινε με οπτική εξέταση των ερυθρών φωτογραφικών πλακών του "Palomar Sky Survey" (POSS) με μεγεθυντικό φακό 3.5x.

Τα κριτήρια επιλογής ήταν τα εξής :

• Πλουσιότητα : Ένα σμήνος έπρεπε να έχει τουλάχιστον 30 μέλη με φωτομετρικά μεγέθη m που να ικανοποιούν τη σχέση $m_3 < m < m_3 + 2$, όπου m_3 το μέγεθος του τρίτου λαμπρότερου γαλαξία στο σμήνος.

• Πυκνότητα : Τα μέλη έπρεπε να βρίσκονται εντός ακτίνας 1.72/z από το κέντρο του σμήνους, όπου z η ερυθρομετάθεση. Η απόσταση αυτή αντιστοιχεί σε ~ 2 Mpc, εάν θεωρήσουμε ότι η σταθερά του Hubble είναι ίση με $H_{\circ} = 72 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

• Απόσταση : Τα σμήνη έπρεπε να έχουν ερυθρομετάθεση $0.02 \le z \le 0.2$. Αυτή η απόσταση την εποχή του Abell αντιστοιχούσε σε περίπου 33 εώς 330 Mpc ($H_{\circ} = 180 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$). Σήμερα αντιστοιχεί σε αποστάσεις από 83 εώς 830 Mpc, ενώ έχει διαπιστωθεί ότι κάποια σμήνη, στην πραγματικότητα, έχουν ερυθρομεταθέσεις μέχρι και z = 0.4.

 Γαλαξιακό πλάτος : Εξαιφέθηκαν όλα τα σμήνη που βφίσκονται κοντά στο επίπεδο του γαλαξία μας, για να αποφευχθεί η σύγχυση από τον μεγάλο αφιθμό αστέφων.

Η κάλυψη του ουφανού στον κατάλογο σμηνών του Abell περιοριζόταν σε αποκλίσεις $dec \ge -27^{\circ}$. Συμπληρώθηκε αργοτερα (Abell et al. 1989) από 1361 ακόμα σμήνη του νοτίου ημισφαιρίου, τα οποία πληρούν τις ίδιες προϋποθέσεις.

Παρά την παλαιότητα και την προφανή υποκειμενικότητα της μεθοδολογίας εντοπισμού των σμηνών, έχει αποδειχθεί ότι ο κατάλογος σμηνών γαλαξιών του Abell, για σμήνη με περισσότερα από 50 μέλη, αποτελεί μία καθ' όλα αξιόπιστη βάση δεδομένων, ειδικά για στατιστικές μελέτες.

2.3.5 Sloan Digital Sky Survey (SDSS).

Το SDSS είναι μία ευρείας κλίμακας σύγχρονη φωτομετρική και φασματοσκοπική επισκόπηση του ουρανού. Για αυτό το σκοπό χρησιμοποιείται αποκλειστικά ένα 2.5 μέτρων οπτικό τηλεσκόπιο, στο Νέο Μεξικό των Η.Π.Α., ενώ το πρόγραμμά έχει πάρει το όνομά του από το ινστιτούτο "Alfred P. Sloan".

Η χαρτογράφηση ξεκίνησε το 2000 και σκοπεύει να καλύψει του 25% του ουρανού, εντοπίζοντας ~100 εκατομμύρια κοσμικά αντικείμενα και να λάβει 1 εκατομμύριο περίπου φάσματα. Η κατανομή των γαλαξιακών ερυθρομεταθέσεών κορυφώνεται περίπου στο z = 0.1, ενώ περιλαμβάνει ερυθρομεταθέσεις λαμπρών ερυθρών γαλαξιών μέχρι z = 0.4 και Quasars μέχρι z = 5.

Για τη φωτομετρική απεικόνιση των κοσμικών αντικειμένων χρησιμοποιούνται πέντε φίλτρα (u,g,r,i,z) που αντιστοιχούν σε μήκη κύματος 3540, 4760, 6280, 7690, 9250 Angstrom, ενώ η φασματοσκοπία επιτυγχάνεται με τη χρήση 640 οπτικών ινών, οι οποίες μπορούν να καταγράψουν ταυτόχρονα ισάριθμα φάσματα. Τα δεδομένα συμπληρώνονται και δημοσιεύονται ανά τακτά χρονικά διαστήματα. Η σύγχρονη (2009) έκδοση δεδομένων ονομάζεται "DR7" (Data Release 7). Η κάλυψη του ουρανού από τα δεδομένα του SDSS φαίνεται στο σχήμα 2.7.

Σχήμα 2.7: Η φωτομετρική (αριστ.) και φασματοσκοπική (δεξ.) κάλυψη του ουρανού από το SDSS.

2.3.6 The Minnesota Automated Plate Scanner Catalog (MAPS).

Ο κατάλογος αυτόματης σάφωσης φωτογραφικών πλακών της Μινεσότα δημιουργήθηκε από ψηφιοποιημένες σαρώσεις γυάλινων αντιγράφων των ευαίσθητων στο κυανό (blue-sensitive) Kodak 103a-O και των ευαίσθητων στο ερυθρό (red-sensitive) Kodak 103a-E φωτογραφικών πλακών του "original Palomar Observatory Sky Survey" (POSS I) για 632 πεδία με γαλαξιακά πλάτη $|b| > 20^{\circ}$ (Pennington et al. 1993, Cabanela et al. 2003). Ο κατάλογος MAPS περιλαμβάνει συντεταγμένες, μεγέθη, χρώματα και πλήθος άλλων φωτομετρικών παραμέτρων από περίπου 90 εκατομμύρια αστέρες και γαλαξίες έως και το 21° μέγεθος (στο κυανό). Ο διαχωρισμός των γαλαξιών από τους αστέρες έγινε με έναν κατηγοριοποιητή εικόνας που περιγράφεται στις εργασίες των Odewahn et al. (1992, 1993).

Η μετατροπή των μεγεθών από το σύστημα O_{MAPS} στο σύστημα $B_{johnson}$ και αντιστρόφως γίνεται σύμφωνα με τη γραμμική σχέση (Humphreys et al. 1991):

$$B_{\rm johnson} = 0.264_{\pm 0.036} + 0.973_{\pm 0.002} \times O_{\rm MAPS}$$

Στο σχήμα 2.8 παρατίθεται η γραφική αναπαράσταση της γραμμικής σχέσης μεταξύ των μεγεθών $B_{\rm johnson}$ και $O_{\rm MAPS}$, όπως προκύπτει από τα 426 αντικείμενα που χρησιμοποιήθηκαν στην εργασία των Humphreys et al. 1991. Είναι φανερό ότι η σχέση είναι γραμμική σε εξαιρετικά υψηλό βαθμό.

Σχήμα 2.8: Γραμμική σχέση μεγεθών $B_{\rm johnson}$ και $O_{\rm MAPS}$

2.3.7 NASA Extragalactic Database (NED).

Η πιο πρόσφατη ενημερωμένη έκδοση της βάσης εξωγαλαξιακών δεδομένων της NASA περιέχει συντεταγμένες, βασικά δεδομένα και πάνω από 12,400,000 ονόματα για 8,100,000 εξωγαλαξιακά αντικείμενα, καθώς επίσης και πάνω από 2,700,000 βιβλιογραφικές αναφορές από 61,000 δημοσιεύσεις. Παράλληλα το NED περιλαμβάνει πλέον των 21,500,000 λεπτομερών φωτομετρικών μετρήσεων και 3,600,000 διαμέτρων, παρμένες από καταλόγους και δημοσιευμένη βιβλιογραφία, καθώς και 972,000 ερυθρομεταθέσεις και 2,300,000 εικόνες, οι περισσότερες από το "all-Sky release of 2MASS" και από το "Digitized Sky Survey" (DSS). Η αναζήτηση των εξωγαλαξιακών αντικειμένων στο NED μπορεί να γίνει βάση του ονόματος, της θέσης, του τύπου (π.χ. QSO ή υπέρυθρη πηγή, κ.τ.λ.) και της ερυθρομετατόπισης του κάθε αντικειμένου.

2.4 Μεθοδολογία.

Στις επόμενες ενότητες παρουσιάζεται λεπτομερειακά η μεθοδολογία που ακολουθήθηκε για την εξαγωγή των αποτελεσμάτων μας από τα διαφορετικού τύπου δεδομένα. Οι ενότητες §2.4.1 έως §2.4.4 αναφέρονται στο τρίτο κεφάλαιο ενώ η §2.4.5 στο τέταρτο. Κατά την ερμηνεία των αποτελεσμάτων δημιουργήθηκε ανάγκη συμπλήρωσης και βελτίωσης της μεθοδολογίας, η οποία όμως παρεμβάλλεται στη ροή των κεφαλαίων, εφόσον κρίνεται απαραίτητη η παρουσίαση πρώτα των αρχικών αποτελεσμάτων που μας οδήγησαν στην επιπλέον ανάλυση.

2.4.1 Ανάλυση μικρής κλίμακας με χρήση των CfA2/SSRS.

Στην πρώτη φάση της επεξεργασίας των δεδομένων μας, η αναξήτηση του χοντινότερου γειτονικού γαλαξία των Sy1, Sy2, BIRG γαλαξιών και των δειγμάτων ελέγχου τους, γίνεται εντός των καταλόγων CfA2 και SSRS ($\S 2.3.1$). Για την ανεύρεση των ζητούμενων γαλαξιών, αναπτύξαμε σε FORTRAN 90 ένα υπολογιστικό πρόγραμμα, το οποίο αρχικά εξακριβώνει αν οι γαλαξίες των δειγμάτων μας βρίσκονται εντός των περιοχών των δύο μεγάλων καταλόγων και τους ταυτοποιεί. Στη συνέχεια, αναζητούμε τον κοντινότερο συνοδό κάθε γαλαξία Seyfert και BIRG και κάθε γαλαξία ελέγχου με σχοπό να υπολογίσουμε το ποσοστό των αντιχειμένων του χάθε δείγματος που έχουν τουλάχιστον ένα γείτονα εντός δεδομένων ορίων, τα οποία μπορούμε να διαφοροποιούμε κατά βούληση. Η αναξήτησή μας κάνει χρήση δύο παραμέτρων, της προβαλλόμενης απόστασης D του κάθε συνοδού από τον κεντρικό και της διαφοράς των ακτινικών ταχυτήτων τους δu (κατά μήκος της ευθείας οράσεως), η οποία μεταφράζεται επίσης σε απόσταση (§2.5.1). Ο συνδυασμός των δύο αυτών παραμέτρων μας δίνει τελικά την απόσταση των γαλαξιών σε τρεις διαστάσεις. Αναζητούμε γειτονικούς γαλαξίες με $\delta u \leq 600 \text{ km/s}$ που είναι περίπου η μέση σχετική ταχύτητα ζεύγους γαλαξιών των δύο προαναφερόμενων καταλόγων ή περίπου η διπλάσια αν εξαιρέσουμε τα σμήνη γαλαξιών (Marzke et al. 1995). Πρέπει όμως να σημειωθεί ότι τα αποτελέσματα μας είναι παρόμοια ακόμα και για $\delta u \leq 1000$ km/s. Τέλος υπολογίζουμε το ποσοστό ενεργών και μη-ενεργών γαλαξιών που έχουν τουλάχιστον έναν συνοδό σε συνάρτηση με την προβαλλόμενη απόσταση D.

Στην περίπτωση των Seyfert γαλαξιών, σκοπός μας είναι να ανακαλύψουμε αν το περιβάλλον των δύο τύπων ενεργών πυρήνων παρουσιάζει στατιστικά σημαντικές διαφορές ή όχι και με αυτό τον τρόπο να επιβεβαιώσουμε ή να απορρίψουμε τα αποτελέσματα της προηγούμενης δισδιάστατης μελέτης (DH99), που βασίστηκε στα ίδια δείγματα. Πριν εξάγουμε οποιαδήποτε συμπεράσματα πρέπει να τονίσουμε ξανά ότι η σύγκριση μεταξύ των δύο τύπων ενεργών γαλαξιών δεν μπορεί να γίνει άμεσα εφόσον, όπως έχουμε ήδη αναφέρει, η κατανομή των μορφολογικών τους τύπων είναι εκ των πραγμάτων διαφορετική αφού οι ενεργοί γαλαξιακοί πυρήνες τύπου 1 φιλοξενούνται κατά προτίμηση σε προγενέστερου τύπου γαλαξίες (early type galaxies) από τους τύπου 2 και παρουσιάζουν μεγαλύτερο βαθμό σμηνοποίησης (Willmer, da Costa & Pellegrini 1998). Εξάλλου, διαφέρουν και οι κατανομές των ερυθρομεταθέσεων και των φαινόμενων μεγεθών τους. Η σύγκριση λοιπόν, γίνεται αρχικά μεταξύ του

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

κάθε τύπου ενεργού γαλαξία και των αντιστοίχων γαλαξιών ελέγχου, των οποίων οι κατανομές είναι όμοιες. Στη συνέχεια εμμέσως μπορούμε να προχωρήσουμε και σε σύγκριση των ενεργών γαλαξιών μεταξύ τους.

Αντίστοιχη μεθοδολογία αχολουθούμε χαι για τους λαμπρούς υπέρυθρους γαλαξίες BIRG, με στόχο να συγχρίνουμε τα αποτελέσματα μας με τα ανάλογα των Seyfert γαλαξιών. Η σύγχριση μεταξύ των διαφορετιχών τύπων γαλαξιών πάλι δεν μπορεί να γίνει άμεσα, εφόσον ενδέχεται οι μορφολογίες τους να διαφέρουν χαι να εισάγουμε ένα συστηματιχό σφάλμα στην ανάλυσή μας. Εξάλλου, διαφέρουν χαι οι κατανομές των ερυθρομεταθέσεων χαι των φαινόμενων μεγεθών τους. Η σύγχριση λοιπόν, γίνεται μεταξύ των BIRG γαλαξιών χαι των αντιστοίχων γαλαξιών ελέγχου τους. Στη συνέχεια μπορούμε να συγχρίνουμε τα αποτελέσματά μας με τα αντίστοιχα των γαλαξιών Seyfert.

2.4.2 Ανάλυση μικρής κλίμακας με χρήση ιδίων φασματοσκοπικών παρατηρήσεων.

Η βασική αιτία που μας ώθησε στη διενέργεια οπτικής φασματοσκοπίας είναι το σχετικά λαμπρό όριο μεγεθών των δύο μεγάλων καταλόγων (CfA2, SSRS). Το ερώτημα λοιπόν, που θελήσαμε να απαντήσουμε με τη λήψη και δικών μας παρατηρήσεων, είναι αν επηρεάζονται τα αποτελέσματα μας, λόγω του ότι δεν συνυπολογίζουμε στην ανάλυση μας αμυδρούς γειτονικούς γαλαξίες. Μήπως δηλαδή, οι Sy1 ή οι Sy2 γαλαξίες των δειγμάτων μας, για κάποιο λόγο, έχουν συστηματικά πιο αμυδρούς γείτονες από το όριο $m_B = 15.5$.

Στο διάγραμμα 2.9 σχεδιάζουμε την κατανομή των μεγεθών των Sy1 (τύπου 1 έως 1.5) και Sy2 (τύπου 1.8 έως 2) γαλαξιών. Είναι φανερό ότι η κατανομή των Sy1 εμφανίζει μέγιστο πιο κοντά, κατά μία μέση ποσότητα $\langle \Delta m \rangle \cong 0.6$ μεγέθη, στο όριο των καταλόγων SSRS και CfA2, από ότι αυτή των Sy2. Αυτό συμβαίνει προφανώς διότι αντίστοιχα η κατανομή των ερυθρομεταθέσεων των Sy1 γαλαξιών παρουσιάζει μέγιστο σε πιο υψηλή τιμή από αυτή των Sy2. Παρότι αυτή η διαφορά δεν επηρεάζει τη σύγκριση μεταξύ των Seyfert γαλαξιών με τους αντίστοιχους γαλαξίες ελέγχου τους, εφόσον οι κατανομές ερυθρομεταθέσεων σε αυτή την περίπτωση είναι όμοιες, θα επηρεάσει πιθανώς την σύγκριση των διαφορετικών Seyfert μεταξύ τους.

Για να εκμηδενίσουμε την πιθανή επίδραση αυτής της διαφοράς στα αποτελέσματα μας, αποφασίσαμε να επεκτείνουμε την μελέτη μας σε πιο αμυδρούς γείτονες (από αυτούς που επιτρέπουν τα όρια των καταλόγων που χρησιμοποιήσαμε προηγουμένως), διεξάγοντας ίδιες φασματοσκοπικές παρατηρήσεις γύρω από δύο υποσύνολα των ενεργών γαλαξιών, που αποτελούνται από 22 γαλαξίες τύπου Sy1 και 22 τύπου Sy2, τους οποίους και επιλέξαμε τυχαία. Γύρω από αυτούς τους γαλαξίες λάβαμε φάσματα όλων των κοντινών αντικειμένων μέχρι μέγεθος $m_B \cong 18.5$ και προβαλλόμενη ακτίνα από τον κεντρικό AGN μέχρι τα 100 h^{-1} kpc.

Ομοίως πράξαμε και για τους BIRG γαλαξίες μας, επιλέγοντας ένα υποσύνολο τους αποτελούμενο από 24 γαλαξίες, τους οποίους επιλέξαμε τυχαία από τον αρχικό κατάλογο των 76 και πραγματοποιώντας φασματοσκοπικές παρατηρήσεις μέχρι μέγεθος $m_B \cong 18.5$ και προβαλλόμενη ακτίνα από το κεντρικό αντικείμενο μέχρι τα 100 h^{-1} kpc.

Σχήμα 2.9: κατανομή μεγεθών των Sy1 (διακεκομμένη γοαμμή) και Sy2 (διαγοαμμισμένη πεοιοχή) γαλαξιών.

Ο στόχος μας με αυτή την εκ νέου αναζήτηση πιο αμυδρών γειτονικών γαλαξιών δεν είναι να επιβεβαιώσουμε ή να απορρίψουμε την ύπαρξη κοντινών γειτόνων γύρω από τους υπέρυθρους γαλαξίες. Αυτό θα γίνει με τη χρήση των CfA2/SSRS καταλόγων, στο όριο μεγεθών των οποίων έχουμε και καλώς ορισμένους γαλαξίες ελέγχου. Αυτό που επιθυμούμε με τις φασματοσκοπικές μας παρατηρήσεις είναι να συγκρίνουμε τα αποτελέσματα μας με τα ανάλογα των ενεργών γαλαξιών. Θέλουμε λοιπόν, να επιβεβαιώσουμε εάν οι ποσοστιαίες διαφορές που ενδέχεται να βρεθούν μεταξύ των γαλαξιών Seyfert, BIRG και των ανάλογων γαλαξιών ελέγχου τους αυξάνονται, μειώνονται ή παραμένουν σταθερές και σε αμυδρότερα μεγέθη.

Για την οπτική φασματοσκοπία χρησιμοποιήσαμε τον "Φασματογράφο και Κάμερα Αμυδρών Αντικειμένων" [Faint Object Spectrograph and Camera (LFOSC)] (Zickgraf et al. 1977) στο 2.1 μέτρων τηλεσκόπιο Guillermo Haro στην Cananea του Μεξικού, οι ρυθμίσεις του οποίου περιγράφονται πιο αναλυτικά στην ενότητα §2.2.1. Στον Πίνακα ΙΙ παρουσιάζουμε το όνομα κάθε Sevfert γαλαξία, τις συντεταγμέ-

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

νες του, την ερυθρομετάθεση του και το μέγεθος του, καθώς και τα ίδια στοιχεία για όλους τους γειτονικούς του γαλαξίες σε προβαλλόμενη ακτινική απόσταση έως και $100 h^{-1}$ kpc. Κάτω από χάθε γραμμή με τα στοιχεία των γαλαξιών Seyfert παραθέτουμε τα αντίστοιχα δεδομένα όλων των πιθανών γειτόνων του. Λόγω του ότι δεν υπάρχουν τα μεγέθη του συστήματος Zwicky για όλους τους γειτονικούς γαλαξίες και ιδιαίτερα για τους πιο αμυδρούς και επειδή είναι απαραίτητα, για λόγους σύγκρισης, ένα ομογενές σύστημα μεγεθών για όλους τους γαλαξίες, αποφασίσαμε να χρησιμοποιήσουμε στον Πίναχα ΙΙ τα μεγέθη O_{MAPS} (§2.3.6). Στην πέμπτη στήλη παραθέτουμε την, υπολογισμένη από τα φάσματά μας, ερυθρομετάθεση όλων των συνοδών γαλαξιών (σε ελάχιστες περιπτώσεις παραθέτουμε την ερυθρομετάθεση από το NED (§2.3.7), λόγω κάποιων ελλείψεων η προβλημάτων στις δικές μας παρατηρήσεις). Η αβεβαιότητα έχει υπολογιστεί από τη διαφορά στις ερυθρομεταθέσεις του ίδιου αντικειμένου, που εξήχθησαν από διαφορετικές γραμμές του φάσματος του. Όπως προαναφέραμε, στο παράρτημα Α περιγράφεται λεπτομερειακά ο τρόπος εξαγωγής της ερυθρομετάθεσης κάθε αντικειμένου από την πρωτογενή ανάλυση των φασμάτων. Τα αντίστοιχα στοιχεία για τους BIRG γαλαξίες παρουσιάζονται στον πίναχα IV.

2.4.3 Ανάλυση μεγάλης κλίμακας με χρήση των CfA2/SSRS.

Σε αυτή την περίπτωση, ο δρόμος που θα ακολουθήσουμε στην ανάλυση μας είναι κάπως διαφορετικός. Αρχικά χρησιμοποιούμε το ίδιο πρόγραμμα FORTRAN90 με το οποίο επεξεργαστήκαμε τους καταλόγους CfA2 και SSRS με αλλαγμένες παραμέτρους. Με τη βοήθεια του υπολογίζουμε το σύνολο των γαλαξιών οι οποίοι βρίσκονται εντός προβαλλόμενης ακτίνας $R = 1 h^{-1}$ Mpc γύρω από κάθε γαλαξία των δειγμάτων μας και που έχουν διαφορά ακτινικών ταχυτήτων $\delta u \leq 1000$ km/s από αυτόν, έτσι ώστε να λάβουμε υπόψη μας τις σχετικές ταχύτητες (peculiar velocities) των γαλαξιών που οφείλονται στο τοπικό βαρυτικό δυναμικό (§2.5.1). Αυτοί οι περιορισμοί ορίζουν έναν επιμήκη κυλινδρικό όγκο V, εντός του οποίου θέλουμε να υπολογίσουμε τον πυκνότητα των γαλαξιών. Εφόσον υπολογίσουμε τον αριθμό n των γαλαξιών μέσα στον όγκο, η πυκνότητα δίνεται από τη γνωστή σχέση :

$$\rho = \frac{n}{V}$$

όπου $V = 4/3\pi R^2 D_z$ και $D_z = \delta u/H_\circ$ (παραλείπονται οι κοσμολογικές διορθώσεις λόγω της εγγύτητας των δειγμάτων μας).

Στην συνέχεια υπολογίζουμε την αναμενόμενη πυχνότητα γαλαξιών στην περιοχή κάθε κεντρικού γαλαξία χωριστά, ολοκληρώνοντας κάθε φορά την αντίστοιχη συνάρτηση φωτεινότητας $\Phi(L)$ (§2.5.2), ανάλογα με το αν ο γαλαξίας μας βρίσκεται στην περιοχή του ουρανού που καλύπτεται από τον κατάλογο SSRS ή τον CfA2. Η συνάρτηση φωτεινότητας ($\Phi(L)$) στο τοπικό σύμπαν εξαρτάται μόνο από τη φωτεινότητα L και δίνεται από τη σχέση:

$$\Phi(L)d(L) = \Phi^* \left(\frac{L}{L^*}\right)^{\alpha} \exp\left[-L/L^*\right] d\left(\frac{L}{L^*}\right)$$

Οι σταθερές α , Φ^* και L^* εξαρτώνται από το είδος των αντικειμένων που παρατηρούμε, το φίλτρο που χρησιμοποιείται κ.τ.λ. Συνεπώς είναι διαφορετικά για τους δύο μεγάλους καταλόγους (βλ. §2.5.2). Η τιμή του $\Phi(L)dL$ μας δίνει τον αριθμό των αντικειμένων ανά μονάδα όγκου, στην περιοχή φωτεινότητας L + dL. Η αναμενόμενη πυκνότητα δηλαδή γαλαξιών σε απόσταση r από τη γη δίνεται από τη σχέση:

$$\langle \rho \rangle = \int_{L_{\rm min(r)}}^\infty \Phi(L) dL$$

όπου Φ(L) η συνάφτηση φωτεινότητας του καταλόγου CfA2 ή SSRS (π.χ. Marzke, Huchra & Geller 1994; da Costa et al. 1994) και $L_{\min(r)}$ η ελάχιστη φωτεινότητα που μποφεί να έχει ένας γαλαξίας σε απόσταση r έτσι ώστε να συμπεφιλαμβάνεται στους συγκεκφιμένους καταλόγους (στην πεφίπτωση μας αυτή που αντιστοιχεί στο $m_B =$ 15.5). Κατόπιν υπολογίζουμε την υπεφπυκνότητα Δρ μέσα στην πφοαναφεφόμενη πεφιοχή, γύφω από τον κάθε κεντφικό γαλαξία, η οποία δίνεται από τη σχέση:

$$\delta_{\rho} = \frac{\rho - \langle \rho \rangle}{\langle \rho \rangle}$$

Σημειώνουμε ότι το δ_{ρ} έχει, εξ'ορισμού, ελάχιστη πιθανή τιμή το -1.

2.4.4 Χρωματικό διάγραμμα υπέρυθρης ακτινοβολίας.

Η ακτινοβολία στο μέσο υπέρυθρο (mid-infrared, 5 με 25 μm) και στο μακρινό υπέρυθρο (far-infrared, 25 με 200 μm) τμήμα του φάσματος, περιγράφουν το σχήμα του φάσματος της ακτινοβολίας από τη σκόνη σε αυτά τα μήκη κύματος.

Σχήμα 2.10: Το χρωματικό διάγραμμα (colour-colour diagram) του δείκτη $\alpha(100, 60)$ συναρτήσει του δείκτη $\alpha(25, 12)$ (Helou, 1986).

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

Το χρωματικό διάγραμμα (colour-colour diagram) του δείκτη $\alpha(100, 60)$ συναρτήσει του δείκτη $\alpha(25, 12)$ στο σχήμα 2.10 (Helou, 1986), όπου $\alpha(\lambda_1/\lambda_2)$ είναι ο φασματικός δείκτης που ορίζεται ως $\alpha(\lambda_1/\lambda_2) = \log(S_{\lambda_1}/S_{\lambda_2})/(\lambda_2/\lambda_1)$, παρουσιάζει μία ακολουθία της θέσης των γαλαξιών, ανάλογα με το σχήμα του υπέρυθρου φάσματος τους, η οποία με μια πρώτη ματιά φαίνεται παράδοξη.

Συγκεκριμένα, το διάγραμμα αυτό υποδεικνύει ότι το φάσμα γίνεται ψυχρότερο στο μέσο υπέρυθρο, όσο γίνεται θερμότερο στο μακρινό υπέρυθρο και αντίστροφα. Αποδεικνύεται, ότι αυτή η συμπεριφορά προέρχεται από την αλληλεπίδραση δύο φασματικών συνιστωσών :

α. της ακτινοβολίας μέλανος σώματος, προερχόμενη από κλασσικούς κόκκους σκόνης σε θερμοδυναμική ισορροπία, περισσότερο στα μεγάλα μήκη κύματος και

β. της σχετικά σταθερής ακτινοβολίας στο μέσο υπέρυθρο από μικροσκοπικούς κόκκους σκόνης (μερικές εκατοντάδες άτομα ή ακόμα λιγότερα), περιοδικά συγκρουόμενους με μεμονωμένα φωτόνια.

Η ακολουθία λοιπόν, των υπέρυθρων χρωμάτων στο διάγραμμα, είναι άμεσα συνδεδεμένη με μία αύξηση της έντασης της ακτινοβολίας θέρμανσης των κόκκων σκόνης. Η ψυχρή κάτω δεξιά περιοχή αντιστοιχεί σε ψυχρό διάχυτο ουδέτερο υδρογόνο και σε αδρανή μοριακά νέφη, ενώ η θερμή (πάνω αριστερά) σε περιοχές ιονισμένου υδρογόνου (HII regions), Starburst και γενικότερα γαλαξίες με υψηλότερη φωτεινότητα στο υπέρυθρο. Είναι λοιπόν φυσικό, να συσχετίσουμε την άνοδο στην χρωματική ακολουθία με αύξηση της έντασης της αστρογένεσης στους γαλαξίες, η οποία σηματοδοτείται, με απλά λόγια, από την αύξηση εκείνου του μέρους της φωτεινότητας L_{IR} στο υπέρυθρο, η οποία ιχνηλατεί τους νεαρούς αστέρες.

2.4.5 Φασματοσκοπική ανάλυση και προσδιορισμός φασματικού τύπου.

Παρουσιάζουμε τη μεθοδολογία ανάλυσης των φασματοσκοπικών μας παρατηρήσεων όλων των γειτόνων γύρω από τους γαλαξίες των τριών δειγμάτων Sy1, Sy2 και BIRG, μέχρι προβαλλόμενη απόσταση $D \leq 75h^{-1}$ kpc και διαφορά ακτινικών ταχυτήτων $\delta \upsilon \leq 600$ km/s, με σκοπό την κατάταξή τους στους διάφορους φασματικούς τύπους. Χρησιμοποιήσαμε επίσης, όπου ήταν διαθέσιμα, φάσματα από το SDSS με σκοπό να τα συγκρίνουμε με τα δικά μας. Ο στόχος μας ήταν να μετρήσουμε τις εξής έξι γραμμές εκπομπής : $H\beta$ λ4861, $H\alpha$ λ6563, [N II] λ6583, [O III] λ5007, [S II] λ6716 and [S II] λ6731.

Για να κατηγοριοποιήσουμε τους γαλαξίες μας χρησιμοποιώντας το διάγραμμα των Baldwin, Phillips & Terlevich (1981, από εδώ και στο εξής BPT, σχήμα 2.11), χρειαζόμαστε μόνο τέσσερεις γραμμές εκπομπής, τις $H\beta$, $H\alpha$, $[N \ II]$ και $[O \ III]$ (Veilleux & Osterbrock, 1987). Δεν ήταν όμως δυνατόν να μετρήσουμε τις γραμμές $H\beta$ και $[O \ III]$ σε όλες τις περιπτώσεις και γι' αυτό κατηγοριοποιήσαμε μερικά από τα αντικείμενά μας χρησιμοποιώντας μόνο τις $H\alpha$ και $[N \ II]$. Παρόλο που μπορούμε να ξεχωρίσουμε τους γαλαξίες Starburst από τους AGN χρησιμοποιώντας μόνο τον λόγο $[N \ II]/H\alpha$, δεν είναι δυνατό να ξεχωρίσουμε τους χαμηλού (LINER) από τους υψηλού ιονισμού (Seyfert) AGN. Μετρήσαμε επίσης την απαγορευμένη γραμμή εκπομπής του ουδέτερου οξυγόνου $[O \ I](\lambda 6300)$, σε όσες περιπτώσεις ήταν εφικτό, ως μία

Σχήμα 2.11: Το διάγραμμα BPT $\log([O III]/H\beta)$ προς $\log([N II]/H\alpha)$ για ένα υποσύνολο των γαλαξιών του SDSS (Choi et al. 2009). Η φαρδιά διακεκομμένη γραμμή είναι η διαχωριστική των Starburst από τα AGN όπως ορίζεται από τους Kauffmann et al. (2003), ενώ η συνεχής γραμμή είναι η αντίστοιχη των Kewley et al. (2001). Τα τρίγωνα παριστούν τους γαλαξίες με έντονη αστρογένεση και τα τετράγωνα τους AGN. Οι γαλαξίες που βρίσκονται μεταξύ των γραμμών παρουσιάζουν μικτά τα χαρακτηριστικά και των δύο κατηγοριών.

επιπλέον ένδειξη δραστηριότητας ενεργού πυρήνα (η συγκεκριμένη γραμμή παράγεται σε περιοχές μερικού ιονισμού, οι οποίες είναι εκτεταμένες μόνο στα AGN). Η αμυδρότητα αυτής της γραμμής όμως δεν μας επιτρέπει την περαιτέρω αξιοποίηση της σε ένα ξεχωριστό διάγραμμα BPT.

Μπορούμε να κατατάξουμε τα αντικείμενα μας στις παρακάτω κατηγορίες:

• Starburst (SB) $\gamma \alpha \lambda \alpha \xi i \epsilon_{\zeta}$: όλα τα αντικείμενα που ικανοποιούν την σχέση (Kauffmann et al. 2003):

$$\log([O~III]/H\beta) < 0.61/(\log([N~II]/H\alpha) - 0.05) + 1.3$$

• AGN γαλαξίες: όλα τα αντικείμενα που ικανοποιούν την σχέση (Kewley et al. 2001):

$$\log([O~III]/H\beta) > 0.61/(\log([N~II]/H\alpha) - 0.47) + 1.19$$

• Μεταβατικούς γαλαξίες (TO): όλα τα αντικείμενα που παρουσιάζουν μικτά χαρακτηριστικά ενεργού πυρήνα και Starburst και για τα οποία ισχύει:

$$\log([O III]/H\beta) > 0.61/(\log([N II]/H\alpha) - 0.05) + 1.3$$

και

$$\log([O III]/H\beta) < 0.61/(\log([N II]/H\alpha) - 0.47) + 1.19$$

Μποφούμε να διαχωφίσουμε πεφαιτέφω τους AGN σε LINER και Seyfert γαλαξίες, ανάλογα με το βαθμό ιονισμού τους. Συγκεκφιμένα, ένας γαλαξίας χαφακτηφίζεται LINER εάν:

$$\log([O III]/H\beta) < 0.90(\log([N II]/H\alpha) + 0.48)$$

ενώ σε αντίθετη περίπτωση χαρακτηρίζεται Seyfert (Schlickman et al. σε εξέλιξη). Αυτή η κατάταξη προέρχεται από προσαρμογή στο BPT διάγραμμα των αντίστοιχων γραμμών διαχωρισμού LINER/Seyfert από τα διαγράμματα $\log([O \ III]/H\beta)$ προς $\log([S \ II]/H\alpha)$ και $\log([O \ III]/H\beta)$ προς $\log([OI]/H\alpha)$ (Kewley et al. 2006b).

Κατηγοριοποιήσαμε επίσης, τα ίδια αντικείμενα χρησιμοποιώντας μόνο το λόγο $[N II]/H\alpha$ όπως περιγράφεται από τους Stasinska et al. (2006) και βρίσκουμε ότι είναι αρκετά αξιόπιστο στις περισσότερες περιπτώσεις (βλ. πίνακα V), με τη μόνη διαφορά ότι, όπως αναφέραμε παραπάνω, δεν μπορούμε να διαχωρίσουμε τους AGN σε LINER και Seyfert γαλαξίες. Συνεπώς, επιλέγουμε να χρησιμοποιήσουμε αυτή την μέθοδο για όλους τους γαλαξίες για τους οποίους δεν έχουμε μετρήσει τις γραμμές [O III] και Hβ. Λεπτομερώς, χρησιμοποιώντας τη μέθοδο των Stasinska et al. (2006), έχουμε την εξής κατηγοριοποίηση :

- ótan $\log([N II]/H\alpha) > -0.1$, caranthréitoume to galaxia AGN.
- ótan $\log([N\ II]/H\alpha) < -0.4$, ton caranthrite SB.
- διαφορετικά τον χαρακτηρίζουμε μεταβατικό (TO).

Επιπλέον, κατατάξαμε όλα τα αντικείμενα μας χρησιμοποιώντας την μέθοδο των Ho, Filipenko, Sargent (1997), η οποία περιλαμβάνει επίσης το λόγο $[S II](\lambda 6716 + \lambda 6731)/H\alpha(\lambda 6563)$. Συγκεκριμένα κατατάσσουμε ως SB γαλαξίες όλους όσοι ικανοποιούν τις σχέσεις: $[N II]/H\alpha < 0.6$ και $[S II]/H\alpha < 0.4$, ενώ ως

Seyfert ή LINER γαλαξίες τους υπόλοιπους. Σε αυτό το σημείο πρέπει να τονίσουμε ότι μερικοί από τους γαλαξίες που χαρακτηρίζονται ως SB σε αυτή τη μελέτη, ενδέχεται να είναι γαλαξίες με αυξήμενο ρυθμό αστρογένεσης (SFR), εμφανίζοντας γραμμές εκπομπής, αλλά μη έχοντας έντονο επεισόδιο αστρογένεσης Starburst. Ο ακριβής όμως, υπολογισμός του SFR απαιτεί και υπέρυθρα δεδομένα, καθώς στην περιπτωσή μας υπάρχει μεγάλη πιθανότητα ένα μέρος της οπτικής ακτινοβολίας να οφείλεται στον ενεργό πυρήνα. Στο μέλλον θα προχωρήσουμε σε ακριβή μέτρηση του ρυθμού αστρογένεσης των γαλαξιών μας, αλλά εδώ για λόγους ομοιομορφίας κατατάσσονται όλοι ως SB, δίχως αυτό να επηρεάζει την ποιοτική ανάλυση των αποτελεσμάτων μας.

Περαιτέρω κατηγοριοποίηση των γαλαξιών Seyfert σε τύπου 1 και 2 έγινε με απ' ευθείας παρατήρηση των φασμάτων και συγκεκριμένα του πλάτους των γραμμών εκπομπής. Δεν παρατηρήθηκε πυρηνική δραστηριότητα τύπου 1 σε κανένα γαλαξία και συνεπώς όλοι οι AGN γαλαξίες θα πρέπει να θεωρηθούν Sy2 ή LINER. Στον πίνακα V παραθέτουμε όλους τους λόγους των γραμμών εκπομπής και τους φασματικούς τύπους των γειτόνων που περιλαμβάνονται στους πίνακες ΙΙ και IV (παράρτημα D), ενώ στο παράρτημα C, όλους τους χάρτες του ουρανού με τους γαλαξίες των δειγμάτων μας και τα αντίστοιχα φάσματά τους.

2.4.6 Ανάλυση δεδομένων ακτινών-Χ.

Τα 16 πεδία του δείγματός μας, που πεφιγφάψαμε στην ενότητα §2.1.3 αναλύθηκαν με τη βοήθεια του λογισμικού SAS (Science Analysis Software) που παφέχεται από το "Κέντφο Επιστημονικής Υποστήφιξης (CSC)" του XMM-Newton. Για την τελική εξαγωγή των πηγών πφοσθέτουμε τις εικόνες και από τους τφεις ανιχνευτές (MOS1, MOS2 και pn) στην ενεφγειακή πεφιοχή 0.5-8 keV και επιλέγουμε εκείνες τις πηγές που βφίσκονται εντός ακτίνας $720h^{-1}$ kpc $(1h_{72}^{-1}$ Mpc) από το κέντφο του σμήνους και 5σ πάνω από το υπόβαθφο (βλ. Παφάφτημα B). Σκοπός μας ήταν να καταμετφήσουμε τις πηγές ακτινών-Χ στις πεφιοχές των σμηνών και να τις συγκφίνουμε με τον αντίστοιχο αφιθμό γαλαξιών που ανιχνεύουμε στο οπτικό μέφος του φάσματος.

Επειδή η ακτινοβολία-Χ που εκπέμπεται από το θερμό αέριο του σμήνους, το οποίο είναι συγκεντρωμένο κυρίως στο κέντρο του, είναι αρκετά ισχυρή ώστε να δημιουργεί σημαντικά προβλήματα ανίχνευσης σημειακών πηγών σε αυτή την περιοχή, αφαιρούμε από την ανάλυσή μας την κεντρική περιοχή του κάθε πεδίου. Η περιοχή αυτή διαφέρει στο κάθε σμήνος και είναι ακτίνας από ~36 έως $360h^{-1}$ kpc. Συγκεκριμένα, την υπολογίζουμε προσαρμόζοντας μία συνάρτηση King (King et al. 1962) στη διάχυτη εκπομπή ακτινοβολίας:

$$\Sigma(r) \propto \left(1 + \left(\frac{r}{r_c}\right)^2\right)^{-3\beta + 1/2}$$

όπου $\Sigma(r)$ η προβαλλόμενη επιφανειαχή πυχνότητα αχτινοβολίας σε συνάρτηση με την αχτίνα r από το χέντρο του σμήνους, r_c η αχτίνα του πυρήνα του σμήνους, χαι β είναι ο λόγος της ενέργειας των γαλαξιών προς την ενέργεια του θερμού αερίου. Η προσαρμογή της συνάρτησης στα δεδομένα μάς δίνει την αχτίνα r_c . Στην περίπτωση μας, η χεντριχή περιοχή που αφαιρέθηχε, με σχοπό να αποφύγουμε όσο το δυνατόν

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

πε
ρισσότερο, την επιρροή του λαμπρού υποβάθρου ακτινών-X στα αποτελέσματα μας, είνα
ι $3 \times r_c$,.

Επίσης με τη βοήθεια του λογισμιχού SAS εξάγουμε τη φωτεινότητα των πηγών καθώς και την ευαισθησία των ανιχνευτών σε κάθε εικονοστοιχείο των πεδίων μας. Η ευαισθησία διαφέρει σημαντικά από περιοχή σε περιοχή του κάθε ανιχνευτή και είναι εξαιρετικά σημαντικό να τη γνωρίζουμε για να υπολογίσουμε τον θεωρητικά αναμενόμενο αριθμό πηγών στην περιοχή. Με αυτά τα δεδομένα κατασκευάζουμε ένα χάρτη ευαισθησίας, καθώς επίσης υπολογίζουμε και το μέσο όριο ροής (flux limit) για το κάθε σμήνος. Κάτω από αυτό το όριο καμία πηγή δεν είναι δυνατόν να ανιχνευτεί. Καταμετρούμε όλες τις πηγές N_x με φωτεινότητα $L > 10^{42}$ erg/s που βρίσκονται εντός της περιοχής (μεταξύ του κέντρου που αφαιρέθηκε και ακτίνας $720h^{-1}$ kpc). Η επιλογή του ορίου φωτεινότητας είναι απαραίτητη ώστε να είμαστε βέβαιοι ότι τα αντικείμενά μας είναι AGN και όχι άλλου είδους πηγές ακτινών-Χ. Επίσης, με αυτόν τον τρόπο αποφεύγουμε το συστηματικό σφάλμα λόγω του διαφορετικού ορίου φωτεινότητας των διαφορετικών πεδίων. Με τη βοήθεια της συνάρτησης ροής logN - logS (§2.5.2) και του χάρτη ευαισθησίας του κάθε πεδίου, υπολογίζουμε τις αναμενόμενες πηγές N_e στην περιοχή του πεδίου που ανιχνεύσαμε τις πηγές N_x και στα ίδια όρια φωτεινότητας. Τέλος υπολογίζουμε την υπερπυχνότητα των πηγών για χάθε σμήνος σύμφωνα με τη σχέση:

$$\delta_{\rm x} = \frac{N_{\rm x} - N_e}{N_e}$$

Για τον υπολογισμό της αντίστοιχης υπερπυκνότητας οπτικών γαλαξιών χρησιμοποιήσαμε τα δεδομένα του SDSS. Αναζητήσαμε και μεταφορτώσαμε όλους τους γαλαξίες στην περιοχή του κάθε σμήνους και τα αντίστοιχα μεγέθη τους στο κόκκινο φίλτρο $r(\lambda 6231)$ του SDSS, μέχρι απόσταση $3.6h^{-1}$ Mpc γύρω από το κέντρο τους. Υπολογίσαμε τη χαρακτηριστική τιμή m^* του κάθε σμήνους σύμφωνα με τη σχέση:

$$m^* = M^* + 5\log_{10}d_L + K(z) + 25 + A\nu$$

 $\delta\pi\sigma\upsilon$:

 d_L η απόσταση λαμπρότητας σε Mpc του σμήνους (με τις απαραίτητες κοσμολογικές διορθώσεις, βλ. §.2.5.1),

$$K(z) \cong -2.5 \times (1+a) \times \log_{10}(1+z), \qquad a = 0.4$$

είναι η διόρθωση του μεγέθους για τη μετατόπιση του φάσματος προς το ερυθρό και

$$A_{\nu} = \frac{2.751}{0.843} \times E(B - V)$$

είναι η απορρόφηση υπολογισμένη στο φίλτρο r του SDSS, χρησιμοποιώντας τους χάρτες Γαλαξιαχής απορρόφησης των Schlengel et al. (1998) και M^* είναι το απόλυτο μέγεθος που αντιστοιχεί στην αλλαγή κλίσης της συνάρτησης λαμπρότητας $\Phi(L)$.

Θεωρώντας ότι οι περισσότεροι γαλαξίες ίσως να φιλοξενούν AGN, είναι δηλαδή λαμπροί, οφείλουν να έχουν μεγέθη κοντά στο m^* , καταμετρήσαμε για το

κάθε σμήνος αυτούς για τους οποίους ισχύει: $m^* - 0.5 < m < m^* + 0.5$, στην ίδια χωρικά περιοχή που υπολογίσαμε και την υπερπυκνότητα των πηγών στις ακτίνες-Χ. Στη συνέχεια, για να βρούμε το μέσο αριθμό αναμενόμενων γαλαξιών στο πεδίο (γαλαξιακό υπόβαθρο), επαναλάβαμε τον υπολογισμό για τα ίδια φαινόμενα μεγέθη, στον δακτύλιο από 2.9 έως $3.6h^{-1}$ Mpc, που βρίσκεται σημαντικά μακρύτερα από την πιθανή έκταση του σμήνους. Εφόσον η προβαλλόμενη επιφάνεια των περιοχών αυτών διαφέρει για κάθε σμήνος ανάλογα με την ερυθρομετάθεσή του, ο υπολογισμός της μέσης τιμής του υποβάθρου έγινε χρησιμοποιώντας όλα τα πεδία και δίνοντας ειδικό βάρος σε κάθε ένα ανάλογα με το μέγεθος του, σύμφωνα δηλαδή με τη σχέση :

$$\langle N \rangle = \sum_{i=1}^{N} (\sigma_i \sin \delta \theta_i) / \sum_{i=1}^{N} \sin \delta \theta_i$$

όπου σ_i είναι ο αριθμός των γαλαξιών ανά Mpc² και δθ είναι η γωνία που αντιστοιχεί στο δακτύλιο μεταξύ 2.9 και 3.6 h^{-1} Mpc για το κάθε σμήνος. Η άθροιση γίνεται σε όλα τα σμήνη. Με αυτό τον τρόπο δίνουμε περισσότερο ειδικό βάρος στα πεδία που καλύπτουν μεγαλύτερη επιφάνεια (χαμηλότερη ερυθρομετάθεση) στον υπολογισμό της μέσης τιμής, εφόσον όσο μικραίνει η επιφάνεια ελαττώνεται ο αριθμός των αντικειμένων και αυξάνεται η αβεβαιότητα. Η υπερπυκνότητα των οπτικών γαλαξιών στα σμήνη υπολογίζεται με τον ίδιο τρόπο:

$$\delta_o = \frac{N_o - \langle N \rangle}{\langle N \rangle}$$

2.5 Εργαλεία.

2.5.1 Κοσμολογικό Υπόβαθοο

Παρόλο που στη συγκεκριμένη διατριβή δεν θα ασχοληθούμε με ζητήματα Κοσμολογικής εξέλιξης του φαινομένου των AGN, παρουσιάζουμε το βασικό Κοσμολογικό μοντέλο που χρησιμοποιούμε, κυρίως για τον υπολογισμό αποστάσεων. Θεωρούμε ως βάση το κοσμολογικό μοντέλο ACDM, το οποίο αντιστοιχεί σε ένα επίπεδο Σύμπαν (καμπυλότητα k = 0) με την σκοτεινή και βαρυονική ύλη να συμμετέχουν με περίπου 26% και 4%, αντίστοιχα στην Συμπαντική υλο-ενέργεια και τη σκοτεινή ενέργεια (πχ. Κοσμολογική σταθερά) να συμμετέχει με το υπόλοιπο ~ 70%. Οι βασικές κοσμολογικές παράμετροι που είναι αναγκαίοι για τον υπολογισμό αποστάσεων είναι: η σταθερά του Hubble, $H_{\rm o}$, η κοσμολογική παράμετρος πυκνότητας της ύλης, $\Omega_{\rm m}$, και η κοσμολογική παράμετρος πυκνότητας της σκοτεινής ενέργειας, Ω_{Λ} .

Στα πλαίσια του ομογενούς, ισοτροπικού και επίπεδου Σύμπαντος, η βασική εξίσωση για την εξέλιξη της διαστολής δίδεται από την εξίσωση Friedmann, η οποία μπορεί να γραφεί ως εξής:

$$H(z) = H_{\circ} \left[\Omega_{\rm m} (1+z)^3 + \Omega_{\Lambda} \right]^{1/2} \Longrightarrow H(z) = H_{\circ} E(z)$$
(2.1)

όπου η συνά
ρτηση H(z)ονομάζεται συνάρτηση Hubble, και οι παράμετ
ροι πυκνότητας υλο-ενέργειας δίδονται από:

$$\Omega_{\rm m} = \frac{\rho}{\rho_{\rm cr}} \quad , \ \Omega_{\Lambda} = \frac{\Lambda c^2}{3H_{\circ}^2} \ , \tag{2.2}$$

με Λ την κοσμολογική σταθερά του Αϊνστάιν, ρ_{cr} την κρίσιμη τιμή πυκνότητας που είναι απαραίτητη για να είναι το Σύμπαν επίπεδο (k = 0) και να περιέχει μόνο ύλη (δίχως σκοτεινή ενέργεια). Αυτή υπολογίζεται εύκολα από την εξίσωση Friedmann μηδενίζοντας την καμπυλότητα και την κοσμολογική σταθερά, και έχει τιμή:

$$\rho_{\rm cr} = 1.88 \times 10^{-29} h^2 \text{ gm cm}^{-3} .$$
(2.3)

Υπενθυμίζουμε ότι η εξυθρομετάθεση, z, οφείλεται στην διαστολή του ορατού σύμπαντος και μετράται από τις παρατηρούμενες γραμμές εκπομπής ή απορρόφησης στα φάσματα των γαλαξιών. Όσο μεγαλύτερη η ταχύτητα απομάκρυνσης ενός γαλαξία από εμάς, τόσο μεγαλύτερη η μετατόπιση των παρατηρούμενων γραμμών προς το ερυθρό τμήμα του φάσματος, σε σχέση με αυτές που παρατηρούμε στο εργαστήριο. Η ερυθρομετάθεση έχει την ίδια μαθηματική έκφραση με το νόμο του Doppler αλλά στην πραγματικότητα είναι μια ιδιότητα του μη ευκλείδειου χώρου. Σύμφωνα με το νόμο του Hubble, στο κοντινό σύμπαν (όπου οι κοσμολογικές διορθώσεις είναι αμελητέες), εάν r είναι η απόσταση μιας εξωγαλαξιακής πηγής από τη Γη και c η ταχύτητα του φωτός, ισχύει ότι :

$$cz = H_{\circ}r \tag{2.4}$$

Από πρόσφατες παρατηρήσεις Κηφείδων στο κοντινό μας Σύμπαν (Freedman et al. 1998) έχει υπολογισθεί με καλή ακρίβεια η σταθερά του Hubble, που δίδεται (στην γνωστή παραμετροποιημένη μορφή) από:

$$H_{\circ} = 100 \ h \ \frac{\text{km}}{\text{sec Mpc}} = \frac{h}{9.78 \ \text{Gyr's}} \quad h \simeq 0.72 \ .$$
 (2.5)

Οι πιο πρόσφατες παρατηρήσεις υπερκαινοφανών αστέρων τύπου SNIa (πχ. Kowalski et al. 2008 και αναφορές εντός αυτού) μαζί με τα αποτελέσματα από την μελέτη των διαταραχών θερμοκρασίας του CMB (Spergel et al. 2008 και αναφορές εντός αυτού) και την σμηνοποίηση των δομών, δίδουν με μεγάλη σχετικά ακρίβεια τις κοσμολογικές παραμέτρους που θα χρησιμοποιήσουμε για τον υπολογισμό αποστάσεων, δηλαδή: $\Omega_m \simeq 0.3$ και $\Omega_\Lambda \simeq 0.7$.

Κοσμολογικές Αποστάσεις

Σε ένα διαστελλόμενο Σύμπαν και σε μεγάλες αποστάσεις δεν ισχύει ο απλός νόμος του Hubble και επιπλέον ο ορισμός των αποστάσεων δεν είναι μονοσήμαντος. Η μοναδική απόλυτη έννοια απόστασης είναι αυτή που ορίζεται από την μετρική, στην προκειμένη περίπτωση από την μετρική Robertson-Waker. Η ίδια απόσταση, d_{pro} , ορίζεται από τον χρόνο που χρειάζεται να διανύσει το φως κατά μήκος μιας γεωδεσιακής. Όμως επειδή δεν είναι άμεσα μετρήσιμη αυτή η απόσταση, χρησιμοποιούμε για την μέτρηση αποστάσεων την λαμπρότητα ή το γωνιακό μέγεθος των εξωγαλαξιακών αντικειμένων. Η απόσταση φωτεινότητας d_L (Luminosity distance) ενός εξωγαλαξιακού αντικειμένου σε ένα διαστελλόμενο σύμπαν παίρνοντας υπόψιν μας τη σχέση φαινόμενης και απόλυτης λαμπρότητα, δίδεται από τη σχέση:

$$d_L = (1+z) \int_0^z \frac{c}{H(z)} dz , \qquad (2.6)$$

ενώ η απόσταση βασισμένη στο γωνιακό μέγεθος κάποιου εξωγαλαξιακού αντικειμένου, δίδεται από την σχέση:

$$d_{\theta} = \frac{1}{(1+z)} \int_{0}^{z} \frac{c}{H(z)} dz$$
 (2.7)

Οι διαφορετικοί ορισμοί αποστάσεων συσχετίζονται ακολούθως:

$$d_{pro} = (1+z)d_{\theta} = \frac{d_L}{1+z}$$
 (2.8)

Υπενθυμίζουμε επίσης ότι η βασική μονάδα αποστάσεων δίδεται από το *parsec* που ορίζεται ως η απόσταση στην οποία ένα άστρο θα είχε τριγωνομετρική παράλλαξη: 1" (parsec = *par*allax + *sec*ond) και τελικά:

$$1pc = 3.086 \times 10^{13}$$
 km = 3.26 light years

Σχετικές Ταχύτητες Γαλαξιών

Η ταχύτητα των εξωγαλαξιακών σωμάτων, δεν οφείλεται μόνο στην διαστολή του σύμπαντος. Οποιαδήποτε δομή υπάρχει σήμερα στο σύμπαν είναι το αποτέλεσμα κάποιας διαταραχής στη συγκέντρωση της ύλης, η οποία, λόγω της βαρυτικής έλξης που άσκησε στη γύρω μάζα, συμπυκνώθηκε και δημιούργησε σταδιακά τις κοσμικές δομές (γαλαξίες, σμήνη γαλαξιών κ.τ.λ.). Τα τοπικά βαρυτικά δυναμικά προσδίδουν στα διάφορα κοσμικά σώματα και μία άλλη, ανεξάρτητη από την διαστολή, συνιστώσα της ακτινικής ταχύτητας, η οποία υπερτίθεται της ταχύτητας διαστολής. Η πιο ξεκάθαρη απόδειξη γι'αυτό είναι η κίνηση της τοπικής ομάδας γαλαξιών ως προς το ισοτροπικό υπόβαθρο μικροκυμάτων με ταχύτητα $u = 622 \pm 44$ km/s στην κατεύθυνση των γαλαξιακών συντεταγμένων $(l, b) = (277^\circ, 30^\circ)$, που οφείλεται στην συγκεντρώσεις ύλης που μας περιβάλουν, σε αποστάσεις έως ~ 150 - 200 h^{-1} Mpc (π.χ. Plionis et al. 1991, Basilakos & Plionis 2006 και αναφορές εντός αυτών). Η ταχύτητα αυτή ονομάζεται σχετική ταχύτητα u_p και για να τη λάβουμε υπόψη μας η σχέση του Hubble μετασχηματίζεται ως εξής:

$$cz = H_{\circ}r + \overline{u}_{p} \cdot \mathbf{r} \tag{2.9}$$

όπου **r** το μοναδιαίο διάνυσμα που είναι παφάλληλο στην διεύθυνση οφάσεως. Σύμφωνα με αυτή τη σχέση, αν για παφάδειγμα δύο γαλαξίες έχουν εφυθφομεταταθέσεις z_1 και z_2 , οι παφατηφούμενες ταχύτητες τους u_1 και u_2 αντίστοιχα, θα δίνονται από τη σχέσεις :

$$u_1 = cz_1 = H_\circ r_1 + \overline{u}_{p1} \cdot \mathbf{r}_1 \tag{2.10}$$

$$u_2 = cz_2 = H_o r_2 + \overline{u}_{p2} \cdot \mathbf{r}_2 \tag{2.11}$$

και η διαφορά τους από την σχέση :

$$\delta u = c\delta z = c(z_2 - z_1) = H_{\circ}(r_2 - r_1) + (\overline{u}_{p2} \cdot \mathbf{r}_2 - \overline{u}_{p1} \cdot \mathbf{r}_1) =>$$
(2.12)

$$\delta u = H_{\circ} \delta r + \delta u_p \tag{2.13}$$

Ο πφώτος όφος του δεξιού σχέλους είναι η διαφοφά ταχυτήτων λόγω της διαστολής του σύμπαντος χαι μποφεί να μεταφφαστεί σε σχετιχή απόσταση των δύο γαλαξιών, ενώ ο δεύτεφος είναι η διαφοφά των σχετιχών ταχυτήτων που οφείλεται στο τοπικό βαφυτικό δυναμικό. Μόνο ο αφιστεφός όφος (cδz) είναι άμεσα παφατηφήσιμος, ενώ για να πφοσδιοφίσουμε τη συνιστώσα της αχτινικής ταχύτητας πφέπει να υπολογίσουμε την απόσταση του γαλαξία με χάποια από τις υπάφχουσες μεθόδους (σχέση Tully-Fisher, σχέση Faber-Jackson, χ.τ.λ.). Τις πεφισσότεφες όμως φοφές, όπως και σε αυτήν την εφγασία, δεν είναι γνωστή η συνιστώσα της σχετικής ταχύτητας χαι υποχφεωτικά λαμβάνουμε υπόψη μας το πιθανό σφάλμα που υπεισέφχεται στους υπολογισμούς των αποστάσεων.

2.5.2 Συνάρτηση φωτεινότητας και συνάρτηση logN-logS.

Συνάρτηση φωτεινότητας

Η γαλαξια
κή συνάρτηση φωτεινότητας $\Phi(L)$ ορίζεται κατά τέτοιο τρόπο ώστε το μέγεθο
ς $\Phi(L) dL$ να μας δίνει τον αριθμό των γαλαξιών ανά μονάδα όγκου στην

περιοχή φωτεινοτήτων (L, L+dL). Έχει βρεθεί ότι μπορούμε να προσεγγίσουμε ικανοποιητικά την παρατηρούμενη φωτεινότητα γαλαξιών με την συνάρτηση Schechter (Schechter 1976), η οποία δίδεται από τη σχέση:

$$\Phi(L)d(L) = \Phi^* \left(\frac{L}{L^*}\right)^{\alpha} \exp\left[-L/L^*\right] d\left(\frac{L}{L^*}\right)$$

Σχήμα 2.12: Συνάρτηση φωτεινότητας του φίλτρου r του SDSS (Montero-Dorta et al. 2008).

Οι σταθερές α , Φ^* και L^* εξαρτώνται από το φίλτρο των παρατηρήσεων, το είδος των αντικειμένων που παρατηρούμε κ.τ.λ. Κατά συνέπεια είναι διαφορετικά για διαφορετικούς καταλόγους όπως οι SSRS, CfA2 και SDSS.

Από τη συνάρτηση $\Phi(L)$ μπορούμε επίσης να υπολογίσουμε την μέση χωρική πυκνότητα γαλαξιών $\langle \rho \rangle$ που αντιστοιχούν στην συνάρτηση Schechter, η οποία είναι:

$$\langle \rho \rangle = \int_{L_{min}}^{L_{max}} \Phi(L) dL = \Phi^* \Gamma(\alpha + 1)$$

όπου $\Gamma(a)=\int x^{a-1}\exp{(-x)}dx.$ Πα
ρομοίως, η μέση πυχνότητα φωτεινότητας δίνεται από τη σχέση:

$$\langle L \rangle = \int_{L_{min}}^{L_{max}} L\Phi(L) dL = \Phi^* L^* \Gamma(\alpha + 2)$$

47

www.manaraa.com

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

Η συνάφτηση φωτεινότητας Schechter καθορίζει μία χαρακτηριστική απόσταση, η οποία αντιστοιχεί στο σημείο όπου η συνάφτηση φωτεινότητας αλλάζει κλίση και μπορεί να οριστεί (μη λαμβάνοντας υπόψη τις κοσμολογικές διορθώσεις) ως:

$$D^* = 10^{0.2(m^* - M^* - 25)}$$

όπου M^* το απόλυτο μέγεθος που αντιστοιχεί στη φωτεινότητα L^* και m^* το αντίστοιχο φαινόμενο μέγεθος.

	CfA2	SSRS	SDSS
	Marzke et al. 1994	da Costa et al. 1994	Montero-Dorta et al. 2008
	$H_{\circ} = 100 \text{ km Mpc}^{-1} \text{s}^{-1}$	$H_{\circ} = 100 \text{ km Mpc}^{-1} \text{s}^{-1}$	H_{\circ} = 100 km Mpc ⁻¹ s ⁻¹
α	-1.0	-1.16	-1.23
Φ^*	0.040	0.011	0.0090
M^*	-18.8	-19.45	-20.73

ΠΙΝΑΚΑΣ Α.1

Στην περίπτωση των καταλόγων SSRS, CfA2 και SDSS (φίλτρο r) οι σταθερές α , $\Phi^*(gal \cdot h^3 Mpc^{-3})$ και M^* που χρησιμοποιήθηκαν στον υπολογισμό της συνάρτησης φωτεινότητας παρατίθενται στον πίνακα A.1.

Συνάρτηση ροής logN-logS

Στην περίπτωση που δεν έχουμε την πληροφορία των ερυθρομεταθέσεων των αντικειμένων, μπορούμε να κατασκευάσουμε ένα σχετικό διάγραμμα, αυτό του αριθμού των αντικειμένων N σε συνάρτηση με τη ροή S. Αυτό είναι σύνηθες στην αστρονομία ακτινών-X όπου οι ερυθρομεταθέσεις των πηγών δεν είναι διαθέσιμες. Το διάγραμμα είναι λογαριθμικό και αποκαλείται logN-logS. Συγκεκριμένα, για την περιοχή του φάσματος που μας ενδιαφέρει (0.5-8kev), χρησιμοποιούμε τη συνάρτηση logN-logS από την εργασία των Basilakos et al. (2005). Τα δεδομένα προσεγγίζονται από τη διπλή σχέση :

$$\log N(S) = (-1.80 \pm 0.02) \log S - (8.9 \pm 2.2), \quad f_x \le 6 \times 10^{-14} \mathrm{erg s^{-1} cm^{-1}}$$

$$\log N(S) = (-2.30 \pm 0.01) \log S - (15.5 \pm 2.2), \quad f_x \ge 6 \times 10^{-14} \mathrm{erg s^{-1} cm^{-1}}$$

Η συγκεκριμένη αποτελεί βελτίωση της ανάλογης σχέσης για τα δεδομένα του δορυφόρου Chandra (Manners et al. 2003), η οποία στην εργασία των Basilakos et al. (2005) αποδεικνύεται ότι αποτελεί άριστη προσέγγιση και για τα δεδομένα του XMM-Newton στις χαμηλές ροές, αλλά υπερεκτιμά τον αριθμό των αναμενόμενων πηγών ακτινών-X στις υψηλές ροές.

Σχήμα 2.13: Συνάρτηση logN - logS των Basilakos et al. (2005) για ενεργειακές περιοχές 0.5-2 keV (αριστ.) και 0.5-8 keV (δεξ.). Οι διακεκομμένες γραμμές είναι οι αντίστοιχες συναρτήσεις των Baldi et al. (2002) και Manners et al. (2003).

2.5.3 Στατιστικός έλεγχος Kolmogorov - Smirnov.

Έστω ότι έχουμε στη διάθεση μας δύο σύνολα δεδομένων μίας ανεξάφτητης μεταβλητής. Το εφώτημα που καλούμαστε να απαντήσουμε, μέσω ενός στατιστικού ελέγχου Kolmogorov - Smirnov, είναι αν τα δεδομένα των δύο συνόλων προέφχονται από την ίδια συνάφτηση κατανομής ή όχι. Σε πιο σωστή στατιστική γλώσσα το εφώτημα τίθεται ως εξής : "Μποφούμε να αποφρίψουμε, με κάποιο στατιστικά σημαντικό βαθμό βεβαιότητας, την αφχική μας υπόθεση ότι τα δύο σύνολα δεδομένων προέφχονται από την ίδια συνάφτηση κατανομής πληθυσμού;"

Αν λοιπόν θεωφήσουμε ότι έχουμε N δεδομένα με τιμές $x_i = 1, 2, ..., N$ μποουύμε να ορίσουμε μία συνάρτηση $S_n(x)$ η οποία να μας δίνει το ποσοστό των δεδομένων που υπάρχουν στα αριστερά κάθε τιμής του x και ονομάζεται αθροιστική συνάρτηση κατανομής πιθανότητας. Αυτή η συνάρτηση είναι προφανώς σταθερή μεταξύ διαδοχικών x_i και αυξάνεται κατά την ίδια ποσότητα 1/N σε κάθε x_i . Επίσης η τιμή της είναι 0 στην μικρότερη επιτρεπτή τιμή του x_i και 1 στην μεγαλύτερη.

Ένας τρόπος να συγκρίνουμε δύο αθροιστικές συναρτήσεις κατανομής πιθανότητας $S_{n1}(x)$ και $S_{n2}(x)$ είναι να υπολογίσουμε τη μέγιστη τιμή D της απόλυτης διαφοράς τους, η οποία δίνεται από τον τύπο:

$$D_{n1,n2} = \max_{-\infty < x < \infty} |S_{n2}(x) - S_{n1}(x)|$$

49

www.manaraa.com

Σχήμα 2.14: Αθοοιστική συνάρτηση κατανομής πιθανότητας $S_n(x)$ και γνωστή προσθετική συνάρτηση κατανομής πιθανότητας P(x). Το D παριστά τη μέγιστη τιμή της απόλυτης διαφοράς τους. (credit Numerical Recipes, Cambridge University Press 1986).

Αναλόγως, για να συγκρίνουμε μία προσθετική συνάρτηση κατανομής πιθανότητας $S_n(x)$, με μία γνωστή προσθετική συνάρτηση κατανομής πιθανότητας P(x), η μέγιστη τιμή D της απόλυτης διαφοράς τους δίνεται από τον τύπο:

$$D_n = \max_{-\infty \le x \le \infty} |S_n(x) - P(x)|$$

Εάν όντως η αρχική μας υπόθεση είναι σωστή, η τιμή του D_n στο άπειρο συγκλίνει στο 0. Η σημασία του στατιστικού ελέγχου Kolmogorov - Smirnov είναι ότι μπορεί να προσδιορίσει την απάντηση στο αρχικό ερώτημα που θέσαμε για οποιαδήποτε μη μηδενική τιμή D.

Η κατανομή K (Kolmogorov) είναι η κατανομή της τυχαίας μεταβλητής:

$$K = \max_{t \in [0,1]} |B(t)|$$

όπου B(t) μία τυχαία κατανομή υπό τη συνθήκη B(0) = B(1) = 0. Η περαιτέρω επεξήγηση της δεν είναι του ενδιαφέροντος αυτού του διδακτορικού. Η αθροιστική συνάρτηση κατανομής της K δίνεται από τη σχέση :

$$P_r(K \le \lambda) = 1 - 2\sum_{j=1}^{\infty} (-1)^{j-1} \exp[-2j^2 \lambda^2]$$

Αν η αρχική μας υπόθεση είναι ορθή ότι το δείγμα μας προ
έρχεται από μία κατανομή P(x), τότε ισχύει ότι:

$$\sqrt{n}D_{n\to\infty} \longrightarrow max_t |B(P(t))|$$

Η αρχική μας υπόθεση απορίπτεται με βαθμό βεβαιότητας α εάν:

$$\sqrt{n}D_n > K_\alpha$$

όπου το K_{α} βρίσκεται από τη σχέση:

$$Pr(K \le K_{\alpha}) = 1 - \alpha$$

Είναι φανερό ότι όσο μικρότερο είναι το α, τόσο μεγαλύτερη είναι η στατιστική πιθανότητα να απορρίψουμε την αρχική μας υπόθεση.

Επιστρέφοντας στην περίπτωση μας της σύγκρισης δύο κατανομών, η αρχική υπόθεση απορίπτεται με βαθμό βεβαιότητας α εάν:

$$N_e D_{n1,n2} > K_\alpha$$

όπου

$$N_e = \frac{N_1 N_2}{N_1 + N_2}$$

και N_1 , N_2 ο αριθμός των σημείων x_i κάθε συνόλου αντίστοιχα.

Κεφάλαιο 2. Δεδομένα και μεθοδολογία

Κεφάλαιο 3

Μελέτη περιβάλλοντος ενεργών γαλαξιών

3.1 Ενεργοί γαλαξίες Seyfert (2006, ApJ, 651, 93).

3.1.1 Εισαγωγή.

Σε αυτό το κεφάλαιο μελετούμε τα δύο δείγματα γαλαξιών Seyfert που χρησιμοποιήθηκαν στη δισδιάστατη μελέτη των Dustzin-Hacyan et al. 1999 (από εδώ και στο εξής θα αναφέρεται ως DH99), με σκοπό το χαρακτηρισμό του περιβάλλοντος τους. Στην εργασία αυτή (DH99), όπως και στο μεγαλύτερο πλήθος παρόμοιων εργασιών, ο προσδιορισμός του αριθμού των γειτονικών γαλαξιών ενός ενεργού γαλαξία επιτυγχάνεται σε δύο διαστάσεις. Συγκεκριμένα, αρχικά καταμετράται ο αριθμός N_g των γαλαξιών που βρίσκονται εντός κάποιας ακτίνας γύρω από τον ενεργό γαλαξία που μελετούμε. Στη συνέχεια εκτιμάται ο μέσος αριθμός γαλαξιών $\langle N \rangle$ του υποβάθρου, με τα ίδια χαρακτηριστικά. Αυτό επιτυγχάνεται με την καταμέτρηση τον γαλαξιών μια πολύ μεγαλύτερης περιοχής, εξαιρώντας την περιοχή του κεντρικού ενεργού γαλαξία (άλλος τρόπος είναι να υπολογιστεί από τη συνάρτηση λαμπρότητας των γαλαξιών του πεδίου, ολοκληρώνοντας τον όγκο). Τέλος, υπολογίζονται γύρω από κάθε AGN, τα επιπλέον του αναφερόμενου μέσου αριθμού αντικείμενα N_s , σύμφωνα με τη σχέση:

$$N_s = N_g - \langle N \rangle$$

Η στατιστική αυτή προσέγγιση είναι τις περισσότερες φορές αναγκαία, εφόσον δεν διαθέτουμε δεδομένα ερυθρομετάθεσης για όλα τα αντικείμενα. Συγκεκριμένα, η ανάλυση στις δύο διαστάσεις έδειξε την ύπαρξη μεγάλου αριθμού κοντινών γειτόνων γύρω από τους Sy2, τόσο σε ακτίνα ίση με 3 φορές τη διάμετρο του κάθε AGN, όσο και σε απόσταση $\cong 100h^{-1}$ kpc από αυτούς. Ανάλογα αποτελέσματα δεν βρέθηκαν για τους Sy1 γαλαξίες.

Σκοπός μας σε αυτό το κεφάλαιο είναι να μελετήσουμε το τρισδιάστατο περιβάλλον των γαλαξιών Seyfert τύπου 1 και 2, χρησιμοποιώντας επιπλέον και τις ερυθρομεταθέσεις των αντικειμένων, ώστε να διερευνήσουμε αν τα αποτελέσματα, που βρέθηκαν στις δύο διαστάσεις, αντικατοπτρίζουν πραγματικά την ύπαρξη μεγαλύτερου αριθμού κοντινών γειτόνων γύρω από τους Sy2 ή σχετίζονται με την προβολή επιπλέον γαλαξιών που δεν έχουν χωρική σχέση με αυτούς.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

3.1.2 Ανάλυση και αποτελέσματα.

Στο πρώτο μέρος της ανάλυσης μας η διερεύνηση γίνεται εντός των γαλαξιακών καταλόγων CFA2 και SSRS, ενώ στο δεύτερο βασίζεται σε ίδιες φασματοσκοπικές παρατηρήσεις. Τέλος, στο τρίτο σκέλος, διευρύνουμε την ερευνά μας σε σημαντικά μεγαλύτερη κλίμακα αποστάσεων. Η μεθοδολογία που ακολουθήθηκε για την εξαγωγή των αποτελεσμάτων έχει περιγραφεί αναλυτικά στα §2.4.1, §2.4.2 και §2.4.3.

Sunodoí galazíes me mégedos $m_{ m B} \leq 15.5$

Στην εικόνα 3.1 σχεδιάζουμε την αναλογία των δύο τύπων γαλαξιών Seyfert και των γαλαξιών ελέγχου που έχουν έναν τουλάχιστον συνοδό σε συνάρτηση με την προβαλλόμενη απόσταση (D) του πρώτου συνοδού. Παρουσιάζουμε τα αποτελέσματα μας για ακτινικές ταχύτητες $\delta u \leq 200$ km/s (αριστερά) και $\delta u \leq 600$ km/s (δεξιά).

Σχήμα 3.1: Αναλογία των Sy1 (φαρδιά κόκκινη γραμμή), Sy2 (φαρδιά μπλε γραμμή) και των γαλαξιών ελέγχου τους (αντίστοιχες λεπτές γραμμές) οι οποίοι έχουν τουλάχιστον ένα κοντινό γειτονικό γαλαξία μέσα στα πλαίσια της αναφερόμενης ερυθρομετάθεσης και της προβαλλόμενης απόστασης (άξονας χ).

Αυτό που παρατηρούμε είναι ότι το ποσοστό των Sy1 και των γαλαξιών ελέγχου τους, που έχουν ένα τουλάχιστον συνοδό γαλαξία είναι το ίδιο, εντός βεβαίως του πλαισίου των στατιστικών σφαλμάτων. Από την άλλη μεριά, παρατηρούμε ένα σημαντικά υψηλότερο ποσοστό γαλαξιών Seyfert τύπου 2 που έχουν συνοδό σε σχέση με τους αντίστοιχους γαλαξίες ελέγχου, αλλά και τους Sy1, μέχρι την απόσταση $D < 75 h^{-1}$ kpc. Τα παραπάνω αποτελέσματα μεταφράζονται ως εξής: Το περιβάλλον των Seyfert γαλαξιών τύπου 1 δεν διαφοροποιείται από το περιβάλλον των

ανενεργών γαλαξιών με όμοια μορφολογικά χαρακτηριστικά. Την αντίθετη ακριβώς συμπεριφορά επιδεικνύουν οι Sy2, οι οποίοι τείνουν να έχουν συχνότερα κοντινούς γαλαξίες από τους αντίστοιχους γαλαξίες ελέγχου. Οι προηγούμενες δύο προτάσεις μας οδηγούν στο συμπέρασμα ότι οι Sy2 τείνουν να έχουν συχνότερα γειτονικούς γαλαξίες από τους Sy1 και αυτό οφείλεται αποκλειστικά στον διαφορετικό τύπο της ενεργότητας του πυρήνα τους. Το συμπέρασμα αυτό επιβεβαιώνει και τα αποτελέσματα της προηγούμενης δισδιάστατης ανάλυσης στους ίδιους γαλαξίες στο DH99.

Το γεγονός ότι τα φαινόμενα μεγέθη των Sy1 είναι πιο κοντά στο όριο των καταλόγων SSRS και CfA2 από αυτά των Sy2 (κατά περίπου 0.6) σημαίνει ότι υπάρχει περίπτωση να χάνουμε συνοδούς των Sy1 γαλαξιών οι οποίοι μπορεί να είναι πέρα του ορίου των καταλόγων, δηλαδή πιο αμυδροί αλλά με παρόμοιες σχετικές διαφορές φαινόμενων μεγεθών. Αυτό το πιθανό συστηματικό σφάλμα δεν επηρεάζει την σύγκριση μεταξύ των ενεργών γαλαξιών και των αντίστοιχων γαλαξιών ελέγχου τους, εφόσον έχουν την ίδια κατανομή ερυθρομεταθέσεων. Είναι δυνατόν όμως, για κάποιον άγνωστο λόγο, οι Sy1 γαλαξίες να έχουν συστηματικά πιο αμυδρούς συνοδούς από τους Sy2, ή και αντίστροφα, και κατά αυτόν τον τρόπο να εξισορροπείται, ή να διευρύνεται, η παρατηρούμενη διαφορά των ποσοστών με γείτονες.

Για να διερευνήσουμε αυτήν την περίπτωση πραγματοποιούμε, στην επόμενη ενότητα, μία φασματοσχοπική μελέτη όλων των συνοδών γαλαξιών μέχρι μέγεθος 18.5 (~3.5 μεγέθη πιο αμυδροί από το όριο των SSRS και CfA2) και μέχρι προβαλλόμενη απόσταση 75 h^{-1} kpc από όλα τα κεντρικά αντικείμενα που απαρτίζουν τα δύο υποσύνολα των δειγμάτων των ενεργών γαλαξιών τύπου 1 και 2, τα οποία επιλέξαμε τυχαία.

Sunodoí galazíes me mégedos $m_B \leq 18.5$

Στο αριστερό διάγραμμα της εικόνας 3.2 σχεδιάζουμε την διαφορά των μεγεθών (Δm_B) μεταξύ του κεντρικού ενεργού γαλαξία και του κοντινότερου συνοδού του στο CfA2 ή στο SSRS (εντός των ορίων $D \leq 75h^{-1}$ kpc και $\delta u \leq 600$ km/s) σε συνάρτηση με το μέγεθος του ενεργού γαλαξία. Οι κύκλοι και τα τετράγωνα συμβολίζουν τους Sy1 και Sy2 γαλαξίες αντιστοίχως. Η φαρδιά διακεκομμένη γραμμή αναπαριστά το όριο κάτω από το οποίο δεν μπορούμε να παρατηρήσουμε κάποιο γείτονα λόγω του ορίου μεγέθους $m_B \leq 15.5$ των καταλόγων SSRS και CfA2. Για να είναι δυνατή η σύγκριση, έχουμε μετατρέψει στο γράφημα όλα τα μεγέθη στο σύστημα Zwicky (παρόλο που στον πίνακα Ι παραθέτουμε τα μεγέθη O_{MAPS}).

Μερικά πολύ ενδιαφέροντα συμπεράσματα μπορούν να εξαχθούν από το συγκεκριμένο διάγραμμα:

1. Ο κοντινότερος συνοδός είναι συστηματικά πιο αμυδρός από τον κεντρικό ενεργό γαλαξία.

2. Λίγοι από τους ποντινότερους γείτονες είναι το ίδιο λαμπροί ή απόμα παι λαμπρότεροι από τους πεντριπούς ενεργούς γαλαξίες.

Στο δεξί διάγραμμα του σχήματος 3.2 σχεδιάζουμε ξανά την διαφορά των μεγεθών (Δm) του κεντρικού ενεργού γαλαξία και του πρώτου συνοδού του (εντός των

Σχήμα 3.2: Διαφορά φαινόμενων μεγεθών (Δm_B) μεταξύ του κεντρικού AGN και του κοντινότερου τους γείτονα. Οι ανοιχτοί κύκλοι αντιστοιχούν στους Sy1 και τα ανοιχτά τετράγωνα στους Sy2 στα όριο μεγέθους των CfA2/SSRS. Ανάλογα, οι γεμάτοι κύκλοι αντιστοιχούν στους Sy1 και τα γεμάτα τετράγωνα στους Sy2 στο όριο μεγέθους των φασματοσκοπικών μας παρατηρήσεων. Για ευκρίνεια ο άξονας μεγεθών ξεκινάει από $m_B = 12$, παρόλο που στο δείγμα μας υπάρχει ένας γαλαξίας με μέγεθος $m_B \simeq 10.5$ και $\Delta m_B \simeq -4.5$

ορίων $D \leq 75h^{-1}$ kpc και $\delta u \leq 600$ km/s) σε συνάρτηση με το μέγεθος του ενεργού γαλαξία, προσθέτοντας αυτή τη φορά και τα δεδομένα των φασματοσκοπικών μας παρατηρήσεων. Στις περιπτώσεις που ο πρώτος γειτονικός γαλαξίας που βρέθηκε από τη φασματοσκοπική μελέτη, συμπίπτει με αυτόν που έχουμε ήδη βρει από τους καταλόγους SSRS και CfA2, συμβολίζεται με το ίδιο κενό σχήμα που έχουμε χρησιμοποιήσει και στο αριστερό διάγραμμα. Οι επιπλέον πρώτοι συνοδοί γαλαξίες, που βρήκαμε με τη φασματοσκοπική μελέτη, συμβολίζονται εδώ με τα συμπαγή κυκλικά και τετράγωνα σχήματα για τους Sy1 και Sy2 αντιστοίχως, σε αντιδιαστολή με τα κενά σχήματα που συμβολίζουν τους ήδη γνωστούς συνοδούς. Η φαρδιά και διακεκομμένη γραμμή συμβολίζει το νέο όριο $m_B = 18.5$, κάτω από το οποίο δεν έχουμε δεδομένα.

Γίνεται φανερό ότι, η επιπλέον φασματοσκοπική μελέτη που πραγματοποιήσαμε βοηθά να συμπληρώσουμε το κενό των γειτονικών γαλαξιών στην περιοχή των μεγεθών $15.5 \le m_B \le 18.5$, το οποίο θα μπορούσε να προσθέσει ένα συστηματικό

σφάλμα στα αποτελέσματά μας με τον τρόπο που ήδη έχουμε περιγράψει σε προηγούμενη ενότητα. Συγκεκριμένα, βρίσκουμε ότι 10 επιπλέον Seyfert γαλαξίες έχουν κοντινούς γείτονες, 6 από τους οποίους είναι Sy2 και 4 Sy1. Σύμφωνα με αυτά τα καινούρια δεδομένα, τα ποσοστά των ενεργών γαλαξιών που έχουν συνοδούς μέχρι μέγεθος 18.5 διαμορφώνονται σε $27 \pm 11\%$ για τους Sy1 και $55 \pm 16\%$ για τους Sy2, έναντι των αντίστοιχων $14 \pm 7\%$ και $27 \pm 11\%$ μέχρι μέγεθος 15.5. Συνεπώς, όταν πάμε βαθύτερα σε μέγεθος, το κλάσμα των ενεργών γαλαξιών διαφορετικού τύπου που έχουν ένα τουλάχιστον συνοδό, αυξάνεται και στους δύο τύπους κατά περίπου τον ίδιο παράγοντα. Αυτό αποδεικνύει ότι τα αρχικά μας αποτελέσματα με βάση τους καταλόγους SSRS και CfA2, που παρουσιαστήκαν νωρίτερα, παραμένουν αναλλοίωτα.

Σχήμα 3.3: Κατανομή συχνότητας (frequency destribution) των Seyfert γαλαξιών που έχουν τουλάχιστον έναν κοντινό γείτονα εντός προβαλλόμενης ακτίνας $75h^{-1}$ kpc και διαφοράς ταχυτήτων στην ευθεία οράσεως δυ ≤ 600 km/s.

Στο διάγραμμα 3.3 παρουσιάζουμε επιπλέον, για τους 22 Sy1 και τους 22 Sy2 γαλαξίες, το ποσοστό των γαλαξιών που έχουν ένα τουλάχιστον συνοδό σε συνάρτηση με την προβαλλόμενη απόσταση από τον κεντρικό γαλαξία. Το πλάτος της κάθε κολώνας του ιστογράμματος ισοδυναμεί με 25 h^{-1} kpc. Η πρώτη κολώνα (κάτω από 0 h^{-1} kpc) παριστά το κλάσμα των απομονωμένων γαλαξιών, δηλαδή αυτών που δεν έχουν κανένα συνοδό γαλαξία μέσα στα προαναφερόμενα όρια $D \leq 75h^{-1}$ kpc, $\delta u \leq 600$ km/s και $m_B \leq 18.5$). Και σε αυτό το διάγραμμα είναι φανερή η, σημαντική στατιστικά, διαφορά μεταξύ των δύο διαφορετικών τύπων ενεργών γαλαξιών Seyfert.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

Μία εύλογη απορία σε αυτό το σημείο είναι για πιο λόγο δεν προχωρήσαμε και σε φασματοσκοπικές παρατηρήσεις ανάλογων δειγμάτων γαλαξιών ελέγχου, εφόσον στην προηγούμενη ανάλυσή μας το θεωρήσαμε απαραίτητο. Η απάντηση είναι ότι σε αυτό το κεφάλαιο δεν επιδιώκουμε να συγκρίνουμε το περιβάλλον των ενεργών γαλαξιών για να αποφανθούμε για πιθανές διαφορές. Αυτό το γνωρίζουμε εκ των προτέρων. Τώρα ελέγχουμε την εμβέλεια της ισχύος αυτών των διαφορών και για μεγέθη αμυδρότερα του ορίου $m_B = 15.5$.

Τέλος, πριν κλείσουμε αυτή την ενότητα, είναι σκόπιμο να συγκρίνουμε τα αποτελέσματα μας με αυτά της δισδιάστατης ανάλυσης στην εργασία DH99, στην οποία κατέληξαν στο συμπέρασμα ότι τα ποσοστά των ενεργών γαλαξιών με κοντινούς γείτονες, μέχρι το όριο $m_B \leq 20.0$, είναι 18% και 36% αντίστοιχα για τους Sy1 και τους Sy2 γαλαξίες. Τα ποσοστά αυτά, αν και χαμηλότερα από τα αντίστοιχα της τρισδιάστατης ανάλυσης, είναι συμβατά με τα αποτελέσματα μας, εντός της στατιστικής αβεβαιότητας. Σε οποιαδήποτε περίπτωση, το ποσοστό των Sy2 γαλαξιών με ένα τουλάχιστον συνοδό είναι κατά ένα παράγοντα ~ 2 υψηλότερο, τόσο από το ανάλογο ποσοστό των Sy1, όσο και από αυτά των δειγμάτων ελέγχου.

Ανάλυση του πεφιβάλλοντος σε μεγάλη κλίμακα.

Σύμφωνα με τα αποτελέσματα των κεφαλαίων που προηγήθηκαν προκύπτουν σημαντικές διαφορές στο εγγύς περιβάλλον των διαφορετικών τύπων ενεργών γαλαξιών. Τι θα συμβεί όμως αν αφήσουμε το "μικρόκοσμο" του κάθε γαλαξία και επεκταθούμε σε πολύ μεγαλύτερες κλίμακες; Πως θα μεταβληθούν τα αποτελέσματά μας αν επεκτείνουμε τη μελέτη μας από τα $75h^{-1}$ kpc στο $1h^{-1}$ Mpc; Θα ερευνήσουμε λοιπόν, την πιθανότητα να υπάρχουν διαφορές στο περιβάλλον των Seyfert γαλαξιών και σε μεγάλη κλίμακα.

Στο διάγραμμα 3.4 έχουμε σχεδιάσει σε ιστόγραμμα την κατανομή συχνότητας των υπερπυκνοτήτων των Sy1 (αριστερά) και των Sy2 (δεξιά) γαλαξιών μαζί με την ανάλογη κατανομή των γαλαξιών ελέγχου τους. Με το τεστ Kolmogorov - Smirnov βρίσκουμε ότι δεν υπάρχει στατιστικώς σημαντική διαφορά μεταξύ των ενεργών γαλαξιών Sy1 ή Sy2 και των αντίστοιχών γαλαξιών ελέγχου τους. Παρόλα αυτά, επίσης με το τεστ Kolmogorov - Smirnov, βρίσκουμε ότι υπάρχει στατιστικώς σημαντική διαφορά μεταξύ των κατανομών των Sy1 και Sy2 γαλαξιών, καθώς και μεταξύ των γαλαξιών ελέγχου τους. Αυτό το αποτέλεσμα αποδεικνύει ότι υπάρχει διαφορά στο περιβάλλον των γαλαξιών που φιλοξενούν τους διαφορετικούς τύπους ενεργών πυρήνων, χωρίς όμως αυτό να οφείλεται στον τύπο της ενεργότητας τους. Επιβεβαιώνουμε λοιπόν το γεγονός ότι οι ενεργοί γαλαξιακοί πυρήνες τύπου 1 φιλοξενούνται κατά προτίμηση σε προγενέστερου τύπου γαλαξίες από τους τύπου 2, ένα γεγονός το οποίο μπορεί να εξηγήσει την μεγαλύτερη παρατηρούμενη πυκνότητα στο περιβάλλον τους, εφόσον είναι γενικά γνωστό ότι οι γαλαξίες προγενέστερου τύπου είναι πιο σμηνοποιημένοι από τους μεταγενέστερου τύπου (π.χ. Willmer, da Costa & Pellegrini 1998).

Πριν κλείσουμε αυτή την ενότητα πρέπει να τονίσουμε ότι τα συμπεράσματα της μελέτης του περιβάλλοντος σε μεγάλη κλίμακα ενισχύει ακόμα περισσότερο τα αποτελέσματα της ανάλυσης σε μικρές κλίμακες. Θα περίμενε κανείς, ότι εφόσον οι

Σχήμα 3.4: Αριστερά: Σύγκριση των κατανομών των υπερπυκνοτήτων γύρω από τους Sy1 γαλαξίες (σκιασμένη περιοχή) και τους γαλαξίες ελέγχου (παχύ περίγραμμα), δεξιά: Σύγκριση των κατανομών των υπερπυκνοτήτων γύρω από τους Sy2 (σκιασμένη περιοχή) και τους αντίστοιχους γαλαξίες ελέγχου (παχύ περίγραμμα).

Sy2 γαλαξίες είναι γενικά λιγότερο σμηνοποιημένοι από τους Sy1, η πιθανότητα να βρεθεί τυχαία κάποιος άλλος γαλαξίας σε κοντινή απόσταση από αυτούς θα ήταν μικρότερη. Παρόλα αυτά συμβαίνει το ακριβώς αντίθετο με αποτέλεσμα να ενισχύονται οι ενδείξεις ότι η ύπαρξη αλληλεπιδράσεων μεταξύ κοντινών γαλαξιών παίζει κάποιο σημαντικό ρόλο στην παρουσία ενεργού πυρήνα τύπου 2, αλλά όχι τύπου 1.

3.1.3 Συμπεράσματα.

Στην παφόν κεφάλαιο μελετήσαμε το τοπικό και το μεγάλης κλίμακας πεφιβάλλον των γαλαξιών Seyfert τύπου 1 και 2 συγκφίνοντας τα δείγματά τους με καλά επιλεγμένα δείγματα ανενεφγών γαλαξιών, οι οποίοι επιλέχτηκαν κατά τέτοιο τφόπο ώστε να αναπαφάγουν επακφιβώς την κατανομή των εφυθφομεταθέσεων, των διαμέτφων και των μοφφολογικών τύπων Hubble των αντίστοιχων δειγμάτων ενεφγών γαλαξιών. Για να το πφαγματοποιήσουμε αυτό χφησιμοποιήσαμε τα δείγματα Seyfert γαλαξιών και γαλαξιών ελέγχου, που είχαν χφησιμοποιήθεί σε μια παφόμοια δισδιάστατη μελέτη (DH99), και καταμετφήσαμε το πλήθος των κοντινότεφων γειτονικών γαλαξιών γύφω από τον καθένα, χφησιμοποιώντας σε πφώτη φάση τους καταλόγους CfA2 και SSRS και σε δεύτεφη ίδιες φασματοσκοπικές παφατηφήσεις πέφιξ ενός πεφιοφισμένου υποσυνόλου Seyfert γαλαξιών, οι οποίες όμως έφταναν σε σημαντικά αμυδφότεφες φαινόμενες λαμπφότητες από το όφιο των δύο καταλόγων SSRS και CfA2.

Καταλήξαμε στο αποτέλεσμα ότι το ποσοστό των γαλαξιών Seyfert τύπου 2, το

المنسارات

οποίο έχει ένα τουλάχιστον γειτονικό γαλαξία μέχρι προβαλλόμενη απόσταση $75h^{-1}$ kpc και διαφορά ακτινικών ταχυτήτων έως και $\delta v \cong 1000$ km/s, είναι σημαντικά υψηλότεgo από τα αντίστοιχα ποσοστά των γαλαξιών ελέγχου και των γαλαξιών Seyfert τύπου 1. Το αντίστοιχο ποσοστό των γαλαξιών Seyfert τύπου 1 είναι παρόμοιο με αυτό των γαλαξιών ελέγχου τους. Αυτό το αποτέλεσμα έρχεται σε συμφωνία με τα αποτελέσματα άλλων προηγούμενων μελετών (Laurikainen & Salo 1995, DH99) και σε αντίθεση με την απλούστερη μορφή του ενοποιημένου μοντέλου για τους γαλαξίες Seyfert. Μια πιθανή ερμηνεία είναι ότι βλέπουμε ορισμένους "απορροφημένους" Seyfert γαλαξίες τύπου 1 σαν τύπου 2 λόγω των αλληλεπιδράσεων μεταξύ αυτών και ενός κοντινού γαλαξία: Μία ισχυρή τέτοια αλληλεπίδραση θα μπορούσε να ενισχύσει την συνολική δημιουργία αστέρων στο εσωτερικό του ενεργού γαλαξία και να οδηγήσει μοριαχά νέφη προς το χέντρο του, τα οποία με την σειρά τους απορροφούν την ακτινοβολία του πυρήνα. Παρόλα αυτά η σχέση μεταξύ αλληλεπιδράσεων και πυρηνικής δραστηριότητας δεν είναι ακόμα εντελώς ξεκάθαρη. Η εργασία των Krongold et al. (2002) προτείνει μία πιθανή εξελικτική ακολουθία των AGN γαλαξιών, η οποία προκαλείται από κοντινές αλληλεπιδράσεις και ξεκινώντας από γαλαξίες Starburst, οδηγούμαστε σε Seyfert τύπου 2 για να καταλήξουμε τελικά σε Seyfert τύπου 1. Περαιτέρω ενδείξεις που υποστηρίζουν αυτό το σενάριο δόθηκαν από τους Storchi-Bergmann et al. (2001) και Tran (2003). Η εξελικτική αυτή ακολουθία μπορεί να είναι ανεξάρτητη της φωτεινότητας του ενεργού γαλαξία, εφόσον μία παρόμοια έχει προταθεί και για τους χαμηλής φωτεινότητας AGN γαλαξίες (LINERS) από τους Krongold et al. (2003) και για τα Quasars από τους Sanders, Surace & Ishida (1999). Λαμβάνοντας υπόψη ότι οι Seyfert 1 γαλαξίες δεν παρατηρούνται συνήθως να αλληλεπιδρούν με άλλους γαλαξίες και γενικά δεν είναι διαταραγμένα αντικείμενα, οι Krongold et al. (2002) πρότειναν ότι δραστηριότητα τύπου 1 μπορεί να παρατηρηθεί μόνο 1 Gyr μετά από την αλληλεπίδραση.

Επίσης βρήκαμε διαφορά μεταξύ του περιβάλλοντος σε μεγάλη κλίμακα των Sy1 και Sy2, με τους τύπου 1 γαλαξίες να προτιμούν σημαντικά πυκνότερες σε γαλαξίες περιοχές από τους τύπου 2. Παρόλα αυτά, εφόσον η ίδια ακριβώς διαφορά είναι παρούσα και στους αντίστοιχους γαλαξίες ελέγχου τους, συμπεραίνουμε ότι αυτή η διαφορά οφείλεται στους διαφορετικούς μορφολογικούς τύπους Hubble που φιλοξενούν τους διαφορετικούς τύπους γαλαξιών Seyfert. Πραγματικά, επιβεβαιώσαμε ότι οι Seyfert 2 του δείγματός μας φιλοξενούνται από γαλαξίες προγενέστερου τύπου από ότι οι τύπου 1 (βλ. επίσης Malkan, Gorjian & Tam 1998), οι οποίοι τείνουν να είναι λιγότερο σμηνοποιημένοι από τους μεταγενέστερου τύπου (βλ. Willmer, da Costa, & Pellgrini 1998).

Ανακεφαλαιώνοντας, σημειώνουμε ότι παρότι οι Seyfert 2 απαντώνται πολύ σπανιότερα σε περιοχές μεγαλύτερης πυκνότητας σε σχέση με τους Seyfert 1, έχουν κοντινούς γειτονικούς γαλαξίες συχνότερα. Τα αποτελέσματα αυτά, παρόλο που έρχονται σε αντίθεση με την απλούστερη μορφή του ενοποιημένου μοντέλου, δεν σημαίνουν κατ'ανάγκη ότι το συγκεκριμένο μοντέλο είναι εξολοκλήρου λανθασμένο. Τόσο ο προσανατολισμός του τόρου σκόνης όσο και η εξέλιξη είναι φυσικό να παίζουν και αυτά το ρόλο τους στην τελική εικόνα του ενεργού γαλαξία.

3.2 Λαμποοί υπέουθοοι γαλαξίες του IRAS (2006, ApJ, 639, 37)

3.2.1 Εισαγωγή.

Παρότι η σχέση μεταξύ υπέρλαμπρων υπέρυθρων γαλαξιών (UltraLuminus InfraRed Galaxies, ULIRGs) και ισχυρών γαλαξιακών αλληλεπιδράσεων έχει μελετηθεί εκτενώς (π.χ. Sanders et al. 1999, Wang et al. 2006 και οι εντός αυτών αναφορές), δεν συμβαίνει το ίδιο για τους μέσης και χαμηλής φωτεινότητας υπέρυθρους γαλαξίες. Μία δισδιάστατη μελέτη (Krongold et al. 2002) ανέδειξε μία τάση των λαμπρών IRAS γαλαξιών (Bright IRAS Galaxies, BIRGs) να έχουν περισσότερους γειτονικούς γαλαξίες από ότι οι Sy1 και οι κανονικοί ανενεργοί γαλαξίες αλλά να βρίσκονται σε σχετική συμφωνία με τους Sy2. Ωστόσο, ο πληθυσμός των BIRG περιλαμβάνει γαλαξίες με διαφορετικούς τύπους "ενεργότητας", όπως γαλαξίες Starburst (στην πλειοψηφία τους), οι οποίοι εμφανίζουν έντονη αστρογένεση , AGN τύπου Seyfert ή LINER, αλλά ακόμα και ανενεργούς. Για τον λόγο αυτό θα ήταν μεγάλου ενδιαφέροντος να αποσαφηνιστεί η σχέση μεταξύ υπέρυθρης ακτινοβολίας, αλληλεπιδράσεων και διαφορετικών τύπων "ενεργότητας".

Την τελευταία δεκαετία, πολλές μελέτες διερευνήσανε τη σχέση μεταξύ αλληλεπιδράσεων, ισχυρής αστρογένεσης (Starbursting) και πυρηνικής δραστηριότητας των γαλαξιών (π.χ.Hernandez-Toledo et al. 2001, Ho 2005 και οι εντός αυτών αναφορές). Παρά την πληθώρα διαθέσιμων πληροφοριών, η σύνδεση μεταξύ των παραπάνω φυσικών διεργασιών παραμένει πιθανή αλλά όχι επιβεβαιωμένη. Μοναδική εξαίρεση αποτελεί η σχέση μεταξύ γαλαξιακών αλληλεπιδράσεων και ισχυρής αστρογένεσης. Ωστόσο, υπάρχουν αποδείξεις ότι οι γαλαξίες με ενεργούς πυρήνες (AGN) φιλοξενούν στο εσωτερικό τους αστρικό πληθυσμό που αποδεικνύει την ύπαρξη πρόσφατου ισχυρού επεισοδίου αστρογένεσης (post-starburst stellar population) (π.χ. Boisson et al. 2000, Gonzalez-Delgado et al 2001), ενώ φαίνεται ότι ισχύει μία αύξουσα σχέση μεταξύ του ποσοστού του συγκεκριμένου πληθυσμού και της εκπομπής ακτινοβολίας από τους AGN (Kauffmann et al. 2003). Η απόδειξη μιας τέτοιας σχέσης μεταξύ AGN και Starburst γαλαξιών θα έλυνε ταυτοχρόνως και το πρόβλημα του μηχανισμού ενεργοποίησης των ενεργών πυρήνων, εφόσον θα αποδεικνυόταν εμμέσως η τροφοδοσία της κεντρικής μελανής οπής λόγω των εξωτερικών γαλαξιακών αλληλεπιδράσεων, ίσως αρχικά μέσω της δημιουργίας ενός Starburst. Παρόλα αυτά, η απόδειξη του παραπάνω συσχετισμού δεν είναι εύκολο έργο. Η βασική δυσκολία προέρχεται από το γεγονός ότι η μέτρηση του ουθμού αστρογένεσης (SFR) σε ενεργούς γαλαξίες παραμένει προβληματική. Όλες οι μέθοδοι παρουσιάζουν επιπλοκές λόγω της δυσχολίας προσδιορισμού της συνεισφοράς του ενεργού πυρήνα στην αχτινοβολία που χρησιμοποιούμε για τον υπολογισμό αυτό.

Ο κατάλογος των λαμπρών υπέρυθρων γαλαξιών προσφέρει μια ομογενή και πλήρη βάση δεδομένων, η οποία είναι πολύτιμη για την στατιστική ανάλυση τέτοιων θεμάτων.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

3.2.2 Ανάλυση και αποτελέσματα.

Στο πρώτο μέρος της ανάλυσης μας παρουσιάζεται η μελέτη εντός των γαλαξιαχών καταλόγων CFA2 και SSRS, ενώ στο δεύτερο η αντίστοιχη βασισμένη στις φασματοσκοπικές μας παρατηρήσεις. Στο τρίτο σκέλος επεκτείνουμε την ερευνά μας σε μεγάλες κλίμακες. Εν κατακλείδι, μελετούμε την σχέση μεταξύ του τύπου της "ενεργότητας" του υπέρυθρου γαλαξία, της απόστασης του από το γείτονα και των υπέρυθρων χρωμάτων του. Η μεθοδολογία που ακολουθήθηκε για την εξαγωγή των αποτελεσμάτων έχει περιγραφεί αναλυτικά στις ενότητες §2.4.1,§2.4.2,§2.4.3 και §2.4.4.

Sunodoí galažíes me mégedos $m_{ m B} \leq 15.5$

Στην εικόνα 3.5 (άνω) σχεδιάζουμε το λόγο των BIRG γαλαξιών και των γαλαξιών ελέγχου τους που έχουν έναν τουλάχιστον συνοδό σε συνάρτηση με την προβαλλόμενη απόσταση (D) του πρώτου συνοδού. Παρουσιάζουμε τα αποτελέσματα μας για σχετικές ακτινικές ταχύτητες $\delta u \leq 200 \text{ km/s}$ (αριστερά) και $\delta u \leq 600 \text{ km/s}$ (δεξιά). Για λόγους σύγκρισης, παραθέτουμε επίσης τα αποτελέσματα της προηγούμενης ανάλυσης μας των γαλαξιών Seyfert και των αντίστοιχων γαλαξιών ελέγχου (κάτω).

Είναι φανερό ότι ένα σημαντικά υψηλότερο ποσοστό BIRG γαλαξιών έχουν τουλάχιστον ένα συνοδό γαλαξία μέχρι την απόσταση $D \leq 100 \ h^{-1}$ kpc σε σχέση με τους γαλαξίες ελέγχου τους. Συνδυάζοντας αυτό το αποτέλεσμα με την ανάλογη μελέτη των γαλαξιών Seyfert, καταλήγουμε στο συμπέρασμα ότι ένα σημαντικά μεγαλύτερο ποσοστό λαμπρών υπέρυθρων γαλαξιών (~ 42%) έχουν τουλάχιστον ένα γείτονα σε σύγκριση με τους Seyfert γαλαξίες τύπου 2 (~ 27%) και ακόμα περισσότερο με τους Seyfert γαλαξίες τύπου 1 (~ 14%), μέσα στα προαναφερόμενα όρια. Σε αυτό το σημείο πρέπει να διευκρινίσουμε το γεγονός ότι η πλειοψηφία των BIRG είναι Starburst γαλαξίες και Sy2 (βλέπε πίνακα III). Τα παραπάνω χρήζουν περαιτέρω ερμηνείας εφόσον έρχονται σε αντιπαράθεση με πολλά μοντέλα σχετικά με τη σχέση Starburst και AGN τα οποία προβλέπουν την ταυτόχρονη δημιουργία Starburst και Sy2 γαλαξιών, λόγω των αλληλεπιδράσεων.

Με σχοπό να διεφευνήσουμε την πιθανότητα ύπαφξης πιο αμυδφών γειτόνων από αυτούς που μποφούν να βφεθούν στους σχετικά "φηχούς" καταλόγους CfA2 και SSRS γύφω από τους BIRG γαλαξίες, πφαγματοποιήσαμε φασματοσκοπικές παφατηφήσεις όλων των γειτόνων (όπως και για το πεφιβάλλον των Sy1 και Sy2 γαλαξιών) γύφω από ένα τυχαίο υποκατάλογο 24 BIRG γαλαξιών με $m_b \leq 18.5$ (3 μεγέθη αμυδφότεφα από τα όφια των CfA2/SSRS καταλόγων). Το συγκεκφιμένο όφιο μεταφφάζεται σε απόλυτο μέγεθος $M_B \sim -15.2$ για τα πιο μακφινά αντικείμενα του καταλόγου μας (z=0.018), μέγεθος που είναι ακόμα μικφότεφο και από αυτό των μικφών Μαγγελανικών νεφών.

Σχήμα 3.5: Άνω: Αναλογία των BIRG γαλαξιών (φαρδιά πράσινη γραμμή) και των γαλαξιών ελέγχου τους (αντίστοιχη λεπτή γραμμή) οι οποίοι έχουν τουλάχιστον ένα κοντινό γειτονικό γαλαξία μέσα στα πλαίσια της αναφερόμενης διαφοράς ακτινικών ταχυτήτων και προβαλλόμενης απόστασης (άξονας χ). Κάτω: Αναλογία των Sy1 (φαρδιά κόκκινη γραμμή), Sy2 (φαρδιά μπλε γραμμή) και των γαλαξιών ελέγχου τους (αντίστοιχες λεπτές γραμμές) οι οποίοι έχουν τουλάχιστον ένα κοντινό γειτονικό γαλαξία μέσα στα πλαίσια της αναφερόμενης διαφοράς ακτινικών ταχυτήτων και προβαλλόμενης απόστασης (άξονας χ).

ستشارات

www.manaraa.com

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

Sunodoí yalažíes me méyeqos $m_{ m B} \leq 18.5$

Στην παρούσα ενότητα παρουσιάζουμε τα αποτελέσματα της φασματοσκοπικής μας ανάλυσης όλων των γειτονικών γαλαξιών μέχρι μέγεθος $m_B = 18.5$ και μέχρι προβαλλόμενη απόσταση 75 h^{-1} kpc από κάθε υπέρυθρο γαλαξία του υποσυνόλου των 24 BIRG γαλαξιών (βλέπε Πίνακα IV). Βρίσκουμε συνολικά ότι 13 από τους 24 έχουν τουλάχιστον έναν γειτονικό γαλαξία μέσα στα προαναφερόμενα όρια. Στις 9 από τις 13 αυτές περιπτώσεις ο γείτονας έχει ήδη βρεθεί στους καταλόγους SSRS/CfA2(δηλ. μόνο τέσσερεις BIRG έχουν γείτονες πιο αμυδρούς από 15.5). Αυτό σημαίνει ότι το ποσοστό των BIRG γαλαξιών που έχουν ένα κοντινό γείτονα (μέχρι $D \leq 75 h^{-1}kpc$ και $\delta u \leq 600$ km/s) αυξάνεται κατά ~ 45% όταν πηγαίνουμε σε πιο αμυδρά μεγέθη.

Σχήμα 3.6: κατανομή των διαφορών των φαινόμενων μεγεθών Δm μεταξύ BIRGγείτονα και Sy2-γείτονα.

Στην ενότητα §3.4 δείξαμε ότι το ποσοστό τόσο των Sy1 γαλαξιών όσο και των Sy2 που έχουν ένα κοντινό γαλαξία (μεταξύ των παραπάνω ορίων) αυξάνεται κατά 100% όταν κατεβαίνουμε από $m_B \leq 15.5$ σε $m_B \leq 18.5$. Πιο λεπτομερειακά, ενώ το ποσοστό των ενεργών γαλαξιών που έχουν τουλάχιστον ένα κοντινό γείτονα αυξάνεται αντίστοιχα από 14% σε 27% και από 27% σε 55%, για τους BIRG αυξάνεται από 42% σε 54% φτάνοντας τα ανάλογα επίπεδα των Sy2 (πρέπει να θυμίσουμε σε αυτό το σημείο ότι οι κατανομές μεγεθών των γαλαξιών που φιλοξενούν ενεργούς

πυρήνες παρουσιάζουν μέγιστο πιο κοντά στο όριο των SSRS/CfA2 από αυτή των BIRG). Καταλήγουμε στο ότι οι BIRG γαλαξίες παρουσιάζουν ένα πλεόνασμα κοντινών γειτόνων, σε σχέση με τους γαλαξίες ελέγχου τους, το οποίο πρέπει να εξηγεί με τη σειρά του την πλεονάζουσα υπέρυθρη ακτινοβολία από τα συγκεκριμένα αντικείμενα. Τα αποτελέσματα αυτά επιβεβαιώνουν προηγούμενη δισδιάστατη μελέτη στον ίδιο κατάλογο λαμπρών υπέρυθρων γαλαξιών (Krongold et al. 2002).

Σχήμα 3.7: Κατανομή των Seyfert και BIRG γαλαξιών που έχουν τουλάχιστον έναν κοντινό γείτονα εντός προβαλλόμενης ακτίνας $75h^{-1}$ kpc και διαφοράς ακτινικών τα-χυτήτων δυ ≤ 600 km/s.

Ένα ενδιαφέρον ερώτημα που προκύπτει από το γεγονός ότι ο κατάλογος των BIRG και των Sy2 γαλαξιών παρουσιάζει το ίδιο περίπου ποσοστό αντικειμένων με ένα τουλάχιστον γείτονα, είναι αν υπάρχει κάποια διαφορά στην κατανομή των διαφορών των μεγεθών (Δm) μεταξύ BIRG-γείτονα και Sy2-γείτονα. Στο σχήμα 3.6 παρουσιάζουμε την κατανομή αυτών των διαφορών για τους BIRG και τους Sy2 γαλαξίες. Παρόλο που φαίνεται να υπάρχει μια μικρή κλίση των BIRG γαλαξιών να έχουν μεγαλύτερους γείτονες σε σχέση με τους Sy2, οι δύο κατανομές είναι στατιστικά ισοδύναμες αν εφαρμόσουμε το Kolmogorov - Smirnov τεστ, το οποίο δίνει πιθανότητα 75% οι δύο κατανομές να έχουν προέλθει από τον ίδιο αρχικό πληθυσμό.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

Επιπλέον, στο διάγραμμα 3.7 παρουσιάζουμε για τους 22 Sy1 τους 22 Sy2 και τους 24 BIRG γαλαξίες, το ποσοστό αυτών που έχουν ένα τουλάχιστον συνοδό σε συνάρτηση με την προβαλλόμενη απόσταση από τον κεντρικό γαλαξία. Το πλάτος της κάθε κολώνας του ιστογράμματος ισοδυναμεί με 25 h^{-1} kpc. Η πρώτη κολώνα (κάτω από 0 h^{-1} kpc) παριστά το λόγο των απομονωμένων γαλαξιών, δηλαδή αυτών που δεν έχουν κανένα συνοδό γαλαξία μέσα στα προαναφερόμενα όρια $D \leq 75h^{-1}$ kpc, $\delta u \leq 600$ km/s και $m_B \leq 18.5$). Και σε αυτό το διάγραμμα είναι φανερή η σημαντική στατιστικά διαφορά μεταξύ των διαφορετικών τύπων ενεργών γαλαξιών και η ομοιότητα μεταξύ Sy2 και BIRG.

Ανάλυση του πεφιβάλλοντος σε μεγάλη κλίμακα.

Στο διάγραμμα 3.8 έχουμε σχεδιάσει σε ιστόγραμμα την κατανομή συχνότητας των υπερπυκνοτήτων των γαλαξιών BIRG μαζί με την ανάλογη κατανομή των γαλαξιών ελέγχου τους (αριστερά) και την αντίστοιχη των γαλαξιών Seyfert (δεξιά), για σύγκριση.

Η αντίστοιχη σύγκοιση των Seyfert με τους γαλαξίες ελέγχου τους παφουσιάζεται στην ενότητα §3.4, όπου βρέθηκε σημαντική διαφορά μεταξύ των Seyfert διαφορετικού τύπου αλλά όχι και μεταξύ Seyfert - γαλαξιών ελέγχου.

Σχήμα 3.8: Αφιστεφά : Σύγκφιση των κατανομών των υπεφπυκνοτήτων γύφω από τους BIRG γαλαξίες (παχύ πεφίγφαμμα) και τους γαλαξίες ελέγχου (σκιασμένη πεφιοχή), δεξιά : Σύγκφιση των κατανομών των υπεφπυκνοτήτων γύφω από τους Sy1 (παχύ πεφίγφαμμα) και Sy2 (σκιασμένη πεφιοχή) γαλαξίες.

Χοησιμοποιώντας το τεστ Kolmogorov - Smirnov αποδειχνύουμε ότι δεν υπάοχει επίσης στατιστικώς σημαντική διαφορά μεταξύ των BIRG γαλαξιών και των αντίστοιχών γαλαξιών ελέγχου τους. Παρόλα αυτά, το τεστ Kolmogorov - Smirnov, δείχνει ότι δεν υπάρχει στατιστικώς σημαντική διαφορά μεταξύ των κατανομών των BIRG και Sy2 γαλαξιών. Αυτό το αποτέλεσμα ενδειχνύει ότι δεν υπάρχει διαφορά μεταξύ του περιβάλλοντος μεγάλης κλίμακας των λαμπρών υπέρυθρων γαλαξιών και αυτών που φιλοξενούν ενεργούς πυρήνες τύπου 2. Αντιθέτως, σημαντική διαφορά παρατηρείται μεταξύ αυτών και των ενεργών γαλαξιών τύπου Sy1, χωρίς όμως αυτό να οφείλεται στον μηχανισμό παραγωγής της παρατηρούμενης ακτινοβολίας τους, αλλά μάλλον στους διαφορετικούς τύπους γαλαξιών που φιλοξενούν τα συγκεκριμένα φαινόμενα. Επισημαίνουμε λοιπόν και πάλι, το γεγονός ότι οι ενεργοί γαλαξιακοί πυρήνες τύπου 1 φιλοξενούνται κατά προτίμηση σε προγενέστερου τύπου γαλαξίες από τους τύπου 2 αλλά και από τους BIRG, ένα γεγονός το οποίο μπορεί να εξηγήσει την μεγαλύτερη παρατηρούμενη πυχνότητα στο περιβάλλον τους, εφόσον είναι γενιχά γνωστό ότι οι γαλαξίες προγενέστερου τύπου είναι πιο σμηνοποιημένοι από τους μεταγενέστερου τύπου (π.χ. Willmer, da Costa & Pellegrini 1998). Με την ανάλυση μεγάλης κλίμακας, τονίζεται και πάλι η ομοιότητα του περιβάλλοντος των Sy2 γαλαξιών με αυτό των λαμπρών υπέρυθρων γαλαξιών.

Χοωματική ανάλυση υπερύθοου.

Σε αυτό το σημείο της ερευνάς μας, θα μελετήσουμε την πιθανότητα συσχέτισης της έντασης της αλληλεπίδρασης των λαμπρών υπέρυθρων γαλαξιών με τον κοντινότερο γείτονά τους και των χαρακτηριστικών του υπέρυθρου φάσματός τους. Θα ορίσουμε τη δύναμη της αλληλεπίδρασης μεταξύ δύο γαλαξιών σαν συνάρτηση μόνο της μεταξύ τους προβαλλόμενης απόστασης. Σε αυτήν την πρώτη προσέγγιση δεν λαμβάνουμε υπόψη μας τις διαφορές των μεγεθών μεταξύ των αλληλεπιδρώντων γαλαξιών.

Διαχωρίσαμε τις αλληλεπιδράσεις των γαλαξιών μας σε τρεις διαφορετικές κατηγορίες βάσει των της απόστασης D των δύο γαλαξιών. Θεωρούμε ισχυρές τις αλληλεπιδράσεις όταν $D \leq 30 h^{-1}$ kpc, ασθενείς όταν $30 h^{-1} \rm kpc < D \leq 100 h^{-1}$ kpc και ανύπαρκτες όταν $D > 100 h^{-1}$ kpc .

Στο σχήμα 3.9 παρουσιάζουμε το χρωματικό διάγραμμα (colour-colour diagram, §2.4.4) του δείκτη $\alpha(60, 25)$ συναρτήσει του δείκτη $\alpha(25, 12)$, όπου $\alpha(\lambda_1/\lambda_2)$ είναι ο φασματικός δείκτης που ορίζεται ως $\alpha(\lambda_1/\lambda_2) = \log(S_{\lambda_1}/S_{\lambda_2})/(\lambda_2/\lambda_1)$. Μποgούμε να δούμε καθαρά τις διαφορές μεταξύ των υπερύθρων χαρακτηριστικών του φάσματος των BIRG γαλαξιών σε σχέση με τη δύναμη της αλληλεπίδρασης και του τύπου του κάθε BIRG γαλαξία. Όπως έχουμε ήδη αναφέρει, ο κατάλογος λαμπρών υπέρυθρων γαλαξιών αποτελείται κυρίως από Starburst γαλαξίες, αρκετούς Sy2 και μερικούς LINER και κανονικούς γαλαξίες. Στο διάγραμμα, η δύναμη της αλληλεπίδρασης είναι κωδικοποιημένη βάσει του σχήματος, ενώ οι διαφορετικοί τύποι βάσει του χρώματος.

Είναι φανερό ότι η συμπεριφορά των Starburst γαλαξιών στον κατάλογό μας εξαρτάται σημαντικά από την δύναμη των αλληλεπιδράσεων. Η πλειονότητα των

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

ισχυρά αλληλεπιδρώντων Starburst παρουσιάζουν φασματικό δείκτη $\alpha(60, 25)$ μεγαλύτερο από -2, ενώ όλοι οι μη αλληλεπιδρώντες Starburst (εκτός από έναν) έχουν μικρότερο. Επίσης βλέπουμε ότι όλοι οι LINER αλλά και οι κανονικοί γαλαξίες βρίσκονται χαμηλότερα στην συγκεκριμένη ακολουθία. Ο μοναδικός ισχυρά αλληλεπιδρών Starburst γαλαξίας ο οποίος βρίσκεται κάτω από τη γραμμή $\alpha(60, 25) = 2.5$ είναι ο NGC7541, ο οποίος συμβαίνει να έχει περισσότερο από διπλάσια ποσότητα μάζας μοριακού αερίου σε σχέση με έναν τυπικό BIRG γαλαξία (Mirabel & Sanders

Σχήμα 3.9: Υπέρυθρο χρωματικό διάγραμμα του φασματικού δείκτη $\alpha(60, 25)$ συναρτήσει του $\alpha(25, 12)$. Η χρωματική κωδικοποίηση των διαφορετικών τύπων γαλαξιών είναι η εξής: οι Starburst γαλαξίες απεικονίζονται με μπλε χρώμα, οι Sy2 με πράσινο, οι LINER με κόκκινο και οι κανονικοί γαλαξίες με μαύρο. Οι ισχυρά αλληλεπιδρώντες BIRG απεικονίζονται με κύκλους, οι ασθενώς με τετράγωνα και οι μη αλληλεπιδρώντες με σταυρούς.

1988). Η διαφορά μεταξύ αλληλεπιδρώντων Starburst γαλαξιών και μη αλληλεπιδρώντων, όπως πιστοποιείται από το τεστ Kolmogorov - Smirnov, είναι στατιστικά σημαντική σε επίπεδο 99.9% όταν συγκρίνουμε τις κατανομές του φασματικού τους δείκτη $\alpha(60, 25)$. Επιπροσθέτως, οι Sy2 γαλαξίες, αλληλεπιδρώντες και μη, φαίνεται ότι βρίσκονται όλοι στην ίδια περιοχή του διαγράμματος $(-2.5 < \alpha(60, 25) < -2)$ με τους μη αλληλεπιδρώντες Starburst, την οποία οριοθετούμε στο διάγραμμα με τις δύο μπλε διακεκομμένες γραμμές.

Η χρωματική ανάλυση των υπέρυθρων χρωμάτων των γαλαξιών BIRG ενδυναμώνει τα προηγούμενα αποτελέσματα μας. Δείχνει εμφανώς ότι η δραστηριότητα αστρογένεσης (Starbursting), της οποίας ένας καλός δείκτης είναι ο α(60, 25), είναι υψηλότερη όταν οι αλληλεπιδράσεις είναι ισχυρότερες και παύουν όταν ο αλληλεπιδρώντας γείτονας απομακρύνεται. Επίσης, όσο η Starburst δραστηριότητα αποδυναμώνεται, εμφανίζονται ενεργοί γαλαξιακοί πυρήνες τύπου 2, δίνοντας επιπλέον αποδείξεις για την ύπαρξη αιτιώδους σχέσης μεταξύ αυτών των αντικειμένων. Τη σχέση αυτή ερμηνεύουμε με ένα εξελικτικό σενάριο που περιλαμβάνει, εκτός από τους Starburst και τους Sy2 ενεργούς γαλαξίες, τους Sy1 και τους LINER. Συμπεράσματα και συζήτηση για το συγκεκριμένο σενάριο και πως αυτό προκύπτει από όλη την προηγούμενη ανάλυση ακολουθεί στην παρακάτω ενότητα.

3.2.3 Συμπεράσματα.

Έχουμε συγκρίνει το τρισδιάστατο περιβάλλον ενός καταλόγου τοπικών λαμπρών υπέρυθρων γαλαξιών (BIRG) με ένα πολύ καλά ορισμένο κατάλογο γαλαξιών ελέγχου, επιλεγμένου κατά τέτοιο τρόπο έτσι ώστε να αναπαράγει τις κατανομές των ερυθρομεταθέσεων, των μορφολογικών τύπων και των διαμέτρων των υπό μελέτη υπέρυθρων γαλαξιών. Αναζητούμε τον κοντινότερο γειτονικό γαλαξία γύρω από κάθε BIRG και κάθε γαλαξία ελέγχου, χρησιμοποιώντας τις κατανομές των γαλαξιακών καταλόγων CfA2 και SSRS, καθώς και ίδιες φασματοσκοπικές παρατηρήσεις, οι οποίες παίρνουν υπόψη τους αμυδρότερα μεγέθη γειτόνων για ένα υποκατάλογο των αρχικών BIRG γαλαξιών. Επίσης, συγκρίνουμε τα αποτελέσματα αυτού του κεφαλαίου με τα αντίστοιχα του κεφαλαίου 3.1 για τους ενεργούς γαλαξίες.

Συνοψίζοντας, βρίσκουμε ότι το ποσοστό των BIRG γαλαξιών που έχουν τουλάχιστον ένα γείτονα, μέσα στα όρια προβαλλόμενης απόστασης $D \le 75h^{-1}$ kpc και διαφοράς ακτινικών ταχυτήτων $\delta u \le 600$ km/sec, είναι στατιστικώς σημαντικά υψηλότερο από το αντίστοιχο ποσοστό των γαλαξιών ελέγχου τους και των γαλαξιών Sy1. Είναι δε, συγκρίσιμο με αυτό των γαλαξιών Sy2. Το παραπάνω έρχεται σε συμφωνία με κάποιες προγενέστερες δισδιάστατες μελέτες (π.χ. Krongold et al. 2002). Σε παρόμοια συμπεράσματα καταλήξαμε επίσης μελετώντας το περιβάλλον των BIRG γαλαξιών σε μεγάλη κλίμακα (μέσα στα όρια προβαλλόμενης απόστασης $D \le 1h^{-1}$ Mpc και διαφοράς ακτινικών ταχυτήτων $\delta u \le 1000$ km/sec). Για ακόμα μια φορά η συμπεριφορά τους ομοιάζει με αυτή των Sy2 αλλά όχι και με των Sy1. Βρίσκουμε επίσης μια στατιστικώς σημαντική διαφορά μεταξύ ισχυρά αλληλεπιδρώντων και μη αλληλεπιδρώντων BIRG γαλαξιών, βάσει των χαρακτηριστικών του φάσματός τους στο υπέρυθρο. Οι γαλαξίες Seyfert 2 εμφανίζουν γενικά παρόμοια συμπεριφορά με

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

αυτή των μη αλληλεπιδοώντων γαλαξιών Starburst, εισάγοντας καινούριες ενδείξεις για τη σχέση Starburst-AGN και τα διάφορα σενάρια που την υποστηρίζουν.

Τα αποτελέσματά μας υποστηρίζουν ένα απλό εξελικτικό σενάριο, το οποίο ξεκινά από μία βαρυτική αλληλεπίδραση μεταξύ δύο κοντινών γαλαξιών και καταλήγει σε μία "Seyfert 1 φάση". Σύμφωνα με αυτό, οι αρχικές ισχυρές αλληλεπιδράσεις οδηγούν μοριακά νέφη αερίου προς την κεντρική περιοχή του γαλαξία, προκαλώντας αυξημένη αστρογένεση και δημιουργώντας έτσι ένα γαλαξία Starburst, ο οποίος ενδέχεται να είναι πυρηνικός Starburst (nuclear Starburst, δες §1.2.2) εφόσον μεγάλη ποσότητα μοριαχού αερίου συγκεντρωθεί χοντά στον πυρήνα. Στη συνέχεια, υλικό μπορεί (με κάποιον ακόμα απροσδιόριστο μηχανισμό) να προσπέσει στις εσώτερες περιοχές του πυρήνα του γαλαξία και να τροφοδοτήσει την μελανή οπή στο κέντρο του, ενεργοποιώντας τον και δημιουργώντας κατ αυτόν τον τρόπο έναν ενεργό πυρήνα (AGN). Το AGN δεν θα είναι εξαρχής παρατηρήσιμο, λόγω της απορρόφησης της ακτινοβολίας του από το υλικό γύρω από τον πυρήνα. Σε αυτήν τη φάση, μόνο το Starburst θα είναι ορατό από τον παρατηρητή. Όταν η δραστηριότητα της αστρογένεσης μετριάσει την ένταση του και η απορρόφηση ελαττωθεί, ένας Seyfert 2 πυρήνας θα αποκαλυφθεί, ακόμα απορροφημένος από τα μοριακά νέφη σε όλες τις γωνίες παρατήρησης. Στην τελική φάση του φαινομένου, ένας Seyfert 1 πυρήνας εμφανίζεται όταν τα μοριακά νέφη, αρχικά σε σφαιρική, κατά προσέγγιση, κατανομή γύρω από τον πυρήνα του γαλαξία, συμπιέζονται στο επίπεδο περιστροφής τους γύρω από τη μελανή οπή και σχηματίζουν έναν τόρο (όπως προβλέπει και το μοντέλο της ενοποίησης για τους Seyfert γαλαξίες). Όσο περισσότερο υλικό επισωρεύεται στην μελανή οπή από τα μοριακά νέφη, τόσο γίνεται πιο πιθανό να ενδυναμώνουν τον ενεργό πυρήνα, με αποτέλεσμα η πίεση της ακτινοβολίας του να απομακούνει τελικά τα νέφη (AGN feedback, AGN outflows) και να αποκαλύψει έναν "απογυμνωμένο" Seyfert 1 πυρήνα.

Εάν όντως οι αλληλεπιδράσεις παίζουν σημαντικό ρόλο στο μηχανισμό ενεργοποίησης των ενεργών πυρήνων, με τον τρόπο που περιγράφεται στο παραπάνω σενάριο, τότε η έλλειψη κοντινών γειτονικών γαλαξιών γύρω από τους Sy1 υποδεικνύει ότι ο χρόνος που χρειάζεται για να εμφανιστεί ο τύπου 1 πυρήνας πρέπει να είναι περίπου ίσος, ή και μεγαλύτερος, από το χρόνο που χρειάζεται ένας βαρυτικά αδέσμευτος γείτονας να δραπετεύσει από το κοντινό περιβάλλον του ($\sim 10^9 yr$) ή από αυτόν που χρειάζεται ένα δέσμιο ζεύγος να συγχωνευτεί ολοκληρωτικά σε ένα γαλαξία (evolved merger).

Υπάρχουν εξάλλου, συνεχώς αυξανόμενες ενδείξεις ότι το πιο λαμπρό υποσύνολο των υπέρυθρων γαλαξιών, οι ULIRG γαλαξίες (Ultra Luminous Infra Red Galaxies), μπορεί πρώτον να είναι οι προγεννήτορες των Quasars και δεύτερον να βρίσκονται πάντα σε ισχυρά αλληλεπιδρώντα συστήματα ή σε συστήματα merger (π.χ. Sanders et al. 1999, Wang et al. 2006). Κατά συνέπεια, η εξελικτική διαδικασία που προτείνεται παραπάνω, μπορεί να γενικευθεί για κάθε τύπου πυρηνική δραστηριότητα ανεξαρτήτως φωτεινότητας (σημειώνουμε ότι οι Krongold et al. (2003) πρότειναν ένα παρόμοιο σενάριο για τους LINER γαλαξίες, οι οποίοι μπορεί να θεωρηθεί ότι υπεισέρχονται στο εξελικτικό σενάριο μετά τους γαλαξίες Sy1 και το συμπληρώνουν στις χαμηλές φωτεινότητες). Επιπλέον ενδείξεις προέρχονται από το γεγονός ότι οι

Quasars τύπου 2 εμφανίζονται πολύ συχνότερα να αλληλεπιδρούν ισχυρά με άλλα αντικείμενα από ότι οι τύπου 1 (Serber et al. 2006).

Με σχοπό να χατανοήσουμε σε μεγαλύτερο βάθος το ρόλο των αλληλεπιδράσεων μεταξύ κοντινών γαλαξιών στην ενεργοποίηση του Starburst και του ενεργού πυρήνα στο εσωτερικό τους καθώς και την εγκυρότητα του μοντέλου της ενοποίησης, θα μελετήσουμε στο επόμενο κεφάλαιο του παρόντος διδακτορικού τα αποτελέσματα των αλληλεπιδράσεων και την πιθανή εμφάνιση παρόμοιων φαινόμενων και στους κοντινούς γείτονες των Seyfert και BIRG γαλαξιών των δειγμάτων μας. Το κίνητρο για αυτήν την περαιτέρω έρευνα είναι η απλή διαπίστωση ότι οι ίδιες ή παρόμοιες φυσικές διεργασίες πρέπει να λαμβάνουν χώρα και στα δύο μέλη ενός αλληλεπιδρώντος ζεύγους γαλαξιών.

3.3 Φασματοσκοπία των γειτόνων ενεργών γαλαξιών (ApJ, submitted).

3.3.1 Εισαγωγή.

Τα αποτελέσματα της μέχρι τώρα μελέτης μας μάς οδήγησαν στο συμπέρασμα ότι ένας κοντινός γείτονας φαίνεται ικανός να ενεργοποιήσει μία φυσική διαδικασία, κατά τη διάρκεια της οποίας ένας ανενεργός γαλαξίας εμφανίζει ισχυρή δραστηριότητα αστρογένεσης, στη συνέχεια μετατρέπεται σε γαλαξία Sy2 και μετά σε Sy1. Επειδή όμως, και τα δύο μέλη ενός ζεύγους γαλαξιών θα πρέπει να αλληλοεπηρεάζονται, πραγματοποιήσαμε μία φασματοσκοπική μελέτη όλων των γειτόνων γαλαξιών, οι οποίοι έχουν ήδη βρεθεί γύρω από τους γαλαξίες Seyfert και BIRG στα προηγούμενα κεφάλαια, με σκοπό να τους κατηγοριοποιήσουμε σε σχέση με το φασματικό τους τύπο. Με αυτό τον τρόπο θέλουμε να διερευνήσουμε περαιτέρω την σχέση των γαλαξιών Starburst και AGN, καθώς και το εξελικτικό μοντέλο που έχουμε προτείνει προηγουμένως, μελετώντας όχι μόνον αυτούς, αλλά και τους γείτονές τους.

Λεπτομεφής παφουσίαση των καταλόγων των Seyfert και των BIRG γαλαξιών έχει ήδη γίνει στα πφοηγούμενα κεφάλαια. Για την παφούσα μελέτη καταφτίσαμε τφία δείγματα γαλαξιών, τα οποία πεφιλαμβάνουν όλους τους γείτονες των ενεφγών και των υπέφυθφων γαλαξιών των πφοαναφεφόμενων υποκαταλόγων. Λάβαμε φασματοσκοπικά δεδομένα για όλα τα αντικείμενα των δειγμάτων μας με σκοπό να πφοσδιοφίσουμε τον τύπο τους. Για την οπτική φασματοσκοπία χφησιμοποιήσαμε τον φασματογφάφο Boller & Chivens στο 2.1 μέτφων τηλεσκόπιο στο "Εθνικό Αστεφοσκοπείο του Μεξικού" στο San Pedro Martir (OAN-SPM, §2.2.2).

Στην επόμενη ενότητα §3.3.2 παραθέτουμε τα αποτελέσματα και τα συμπεράσματά μας. Λόγω του ότι όλοι οι γαλαξίες που χρησιμοποιούμε στην παρούσα μελέτη ανήκουν στο τοπικό σύμπαν οι κοσμολογικές διορθώσεις στις αποστάσεις τους είναι αμελητέες.

3.3.2 Ανάλυση και αποτελέσματα.

Ενεργότητα των γειτόνων.

Σε αυτή την ενότητα παρουσιάζουμε λεπτομερειακά τα αποτελέσματα της φασματοσκοπίας και της κατάταξης των αντικειμένων μας στους διάφορους φασματικούς τύπους. Μπορούμε να εξάγουμε τα πρώτα συμπεράσματα μας, για το κάθε δείγμα ξεχωριστά, μελετώντας τον πίνακα V. Από τους 15 γείτονες των Sy1 γαλαξιών μόνο 4 είναι ανενεργοί (normal) γαλαξίες, ενώ 7 από αυτούς είναι SB και 4 LINER ή TO. Παρόμοια αποτελέσματα ισχύουν και για τους Sy2. Μόνο 5 από τους 17 γείτονες δεν εμφανίζουν καμία μορφή δραστηριότητας. Συνεπώς, και στις δύο περιπτώσεις, παgουσιάζεται δραστηριότητα σε κατ' ελάχιστο 70% των κοντινών συνοδών των Seyfert γαλαξιών. Για το δείγμα των υπέρυθρων γαλαξιών αυτό το ποσοστό φτάνει περίπου το 83%, εφόσον μόνο 4 από τους 23 γείτονες είναι ανενεργοί γαλαξίες.

Παρόλα αυτά, η ανάλυση του δείγματος των υπέρυθρων γαλαξιών είναι πιο πολύπλοκη, εφόσον αποτελείται από πολλών φασματικών τύπων γαλαξίες (στην πλειο-

νότητα Starburst και Sy2, αλλά επίσης και LINER και κανονικούς γαλαξίες). Στην ενότητα §2.2.4, όπου τους αναλύσαμε διεξοδικά, για να τους κατηγοφιοποιήσουμε στους διάφοφους τύπους χφησιμοποιήσαμε πολλές πφοηγούμενες μελέτες όπως: Coziol et al. 1998, Veilleux et al. 1997, Ho et al. 1995, Corbett et al. 2003, de Grijp et al. 1987 και φασματοσκοπικά δεδομένα του SDSS (Sloan Digital Sky Survey), όπου ήταν διαθέσιμα, αλλά δυστυχώς, διαθέτουμε τα φάσματα μόνο λίγων εξ' αυτών. Γι'αυτό το λόγο θα χφησιμοποιήσουμε στην υπόλοιπη μελέτη μας μόνο εκείνους τους BIRG γαλαξίες που έχουν φασματοσκοπικά δεδομένα και κατατάσσονται ως AGN. Κατά

Σχήμα 3.10: Διάγομμα κατηγοοιοποίησης BPT των γειτόνων των Syl και Sy2. Η φαρδιά διακεκομμένη γραμμή είναι η διαχωριστική των Starburst από τα AGN όπως ορίζεται από τους Kewley et al. (2001), η συνεχής γραμμή είναι η αντίστοιχη των Kauffmann et al. 2003, ενώ η λεπτή διακεκκομένη ευθεία γραμμή είναι η διαχωριστική των Seyfert από τους LINER των Schlickmann et al. (σε εξέλιξη). Τα τρίγωνα είναι οι συνοδοί των Sy2 γαλαξιών (τα κενά τρίγωνα είναι οι συνοδοί των BIRG Sy2 γαλαξιών). Οι σταυροί είναι οι γείτονες των Syl γαλαξιών.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

συνέπεια, στο σχήμα 3.10 σχεδιάζουμε μόνο τους τρεις γείτονες των δύο Sy2 BIRG.

Ένα από τα πιο ενδιαφέροντα αποτελέσματα της έρευνάς μας είναι η φανερή τάση των γειτόνων των Sy2 γαλαξιών να παρουσιάζουν υψηλότερες τιμές του λόγου $[O \ III]/H\beta$ (σχήμα 3.10). Εφόσον αυτός ο λόγος δείχνει τον βαθμό ιονισμού και την ηλικία του Starburst (π.χ. Dopita et al. 2006), συμπεραίνουμε ότι οι γείτονες των Sy2 τείνουν να είναι πιο ιονισμένοι από τους αντίστοιχούς των Sy1 και η ηλικία του Starburst τους μικρότερη. Η ευθεία διακεκκομένη γραμμή

$$\log([O III]/H\beta) = 0.90 \log([N II]/H\alpha) + 0.48$$

η οποία διαχωρίζει τους LINER από τους Seyfert, διαχωρίζει επίσης ξεκάθαρα και τους γείτονες των Sy1 και Sy2 γαλαξιών. Πιστεύουμε ότι όλα τα αντικείμενα τα οποία κατηγοριοποιούνται σαν μεταβατικά πάνω από αυτή τη γραμμή είναι σύνθετα Sy2/SB αντικείμενα, ενώ κάτω από αυτή, σύνθετα LINER/SB.

Υποθέτουμε ότι οι γαλαξίες που βρίσκονται μεταξύ αυτής της γραμμής και των γραμμών των Kauffmann et al. (2003) και Kewley et al. (2001) μετατοπίζονται πάνω στο διάγραμμα BPT από μία καθαρή κατάσταση Starburst σε μία καθαρή κατάσταση AGN. Τα συγκεκριμένα αντικείμενα δεν πρέπει να συγχέονται με τα αντίστοιχα που βρίσκονται κάτω από τη γραμμή και τα οποία, όπως πιστεύουμε, ακολουθούν την αντίθετη κατεύθυνση. Αυτό είναι μείζονος σημασίας σε ένα πιθανό εξελικτικό σενάριο μεταξύ των διαφόρων φασματικών τύπων των γαλαξιών και θα συζητηθεί λεπτομερειακά παρακάτω.

Τέλος, σχεδιάζουμε στο διάγραμμα 3.11 το λόγο $\log([O III]/H\beta)$ προς $\log([S II]/H\alpha)$. Ποιοτικά, τα ίδια αποτελέσματα του σχήματος 3.10 επαναλαμβάνονται και εδώ. Οι διαχωριστικές γραμμές δίνονται στην εργασία των Kewley et al. (2006b). Όμως, δεν υπάρχει η αντίστοιχη γραμμή των Kauffmann et al. (2003) και συνεπώς δεν μπορούμε να διαχωρίσουμε τους SB γαλαξίες από τους μεταβατικούς. Εφόσον όμως, η μέτρηση της διπλής γραμμής ιονισμένου θείου ([S II]) φέρει, κατά κανόνα, μεγαλύτερα σφάλματα, θα βγάλουμε όλα τα συμπεράσματά μας χρησιμοποιώντας την απαγορευμένη γραμμή του ιονισμένου αζώτου ([N II]). Βλέπουμε όμως, για ακόμα μία φορά, πόσο κοντά στη μεταβατική ζώνη βρίσκονται οι γείτονες των ενεργών γαλαξιών. Το αποτέλεσμα αυτό έρχεται σε συμφωνία με το συμπέρασμα των Kewley et al. (2006a) ότι οι SB γαλαξίες που ανήκουν σε ζεύγη βρίσκονται πιο κοντά στη διαχωριστική γραμμή από τους SB γαλαξίες του πεδίου.

Πρέπει να σημειωθεί, ότι από το διάγραμμα εξαιρέθηκε μία πεπλεγμένη περίπτωση ενός αντικειμένου με τρεις γείτονες, από τους οποίους οι δύο συγχωνεύονταν και δεν ήταν διακρίσιμοι από το τηλεσκόπιο (UGC7064). Επίσης, λείπουν από το διάγραμμα ορισμένοι χαμηλής φωτεινότητας AGN, για τους οποίους δεν μπορούσαμε να μετρήσουμε το λόγο [O III]/Hβ.

Συνοψίζοντας :

• Περισσότερο από 70% των γειτόνων των Seyfert και των BIRG γαλαξιών παρουσιάζουν κάποιου είδους δραστηριότητα (AGN ή Starburst).

Οι γείτονες των Sy2 είναι περισσότερο ιονισμένοι από τους αντίστοιχους
των Sy1 και η ηλικία του Starburst τους είναι μικρότερη, γεγονός που υποδεικνύει

Σχήμα 3.11: log([O III]/Hβ) προς log([S II]/Hα) διάγραμμα BPT. όλα τα σημεία και οι γραμμές όπως στο διάγραμμα 3.10

διαφορετικούς πληθυσμούς.

Στην επόμενη ενότητα θα μελετήσουμε λεπτομερώς τη σχέση μεταξύ του μεγέθους και του τύπου κάθε γαλαξία σε σχέση με τα αντίστοιχα των γειτόνων του.

Ανάλυση των μεγεθών.

Εφόσον έχουμε εφαρμόσει ένα ομογενές σύστημα μεγεθών στην έως τώρα ανάλυση μας, είναι ασφαλές να μελετήσουμε εάν υπάρχει κάποια σχέση μεταξύ του τύπου των αλληλεπιδρώντων γαλαξιών και των μεγεθών τους. Αυτό μπορεί να γίνει με δύο τρόπους: Συγκρίνοντας τα απόλυτα μεγέθη ή εναλλακτικά μελετώντας τη διαφορά των φαινόμενων μεγεθών του ζεύγους. Ενώ το τελευταίο είναι ένας καλός δείκτης της δύναμης της αλληλεπίδρασης, το πρώτο μπορεί πιθανώς να αναδείξει διαφορές μεταξύ πραγματικά μικρών και μεγάλων γαλαξιών. Γι' αυτό επιλέξαμε να πραγματοποιήσουμε και τους δύο τύπους ανάλυσης, παρόλο που όλοι οι υπό μελέτη γαλαξίες

ανήκουν στο τοπικό σύμπαν ($z \le 0.03$) και δεν περιμένουμε να βρούμε μεγάλες διαφορές μεταξύ τους. Συγκεκριμένα, εφόσον στο τοπικό σύμπαν οι ενεργοί πυρήνες είναι αναμενόμενο να φιλοξενούνται από τους πιο μαζικούς γαλαξίες (Ho et al. 1997, Kauffmann et al. 2003), ένας μεγάλος συνοδός συγκριτικά με τον AGN, πρέπει εν γένει, να είναι μεγάλος και σε απόλυτο μέγεθος. Αυτό αποδεικνύεται σωστό από την ανάλυση μας και η διαφορά μεταξύ των δύο προσεγγίσεων είναι αμελητέα. Έτσι, παραθέτουμε εδώ την ανάλυση των φαινόμενων μεγεθών, η οποία πιστεύουμε ότι είναι ένας πιο καλός δείκτης της διαδικασίας αλληλεπίδρασης - δραστηριότητας.

Η σύγκριση μεγεθών είναι μία τετριμμένη διαδικασία, αλλά μένει ακόμα να προσδιορίσουμε ποιον θεωρούμε μικρό και ποιον μεγάλο συνοδό. Στην περίπτωση των φαινόμενων μεγεθών (Δm) ορίζουμε το συνοδό ως:

- 1. Γ (Γίγαντα) όταν $\Delta m \leq 0.5$
- 2. M (Megálo) óta
v $0.5 \leq \Delta m \leq 1.5$
- 3.
μ (μικρό) όταν $\Delta m \geq 1.5.$

Στον πίνακα Α παρουσιάζουμε τα αποτελέσματα της παραπάνω κατάταξης. Με Σ σημειώνουμε τους γαλαξίες εκείνους που βρίσκονται σε διαδικασία συγχώνευσης (merging). Φυσικά, η κατάταξη ενός αντικειμένου στις παραπάνω κατηγορίες δεν είναι απόλυτη, όπως συζητήσαμε παραπάνω. Αναμφίβολα, στα δείγματά μας, υπάρχουν γαλαξίες οι οποίοι είναι πραγματικά μικροί ή μεγάλοι, αλλά και κάποιοι που είναι πολύ κοντά στο όριο. Όμως, παρά την πιθανότητα αυτού του σφάλματος, τα αποτελέσματα που θα εξαχθούν από μία τέτοια ανάλυση μπορεί να είναι πολύτιμα.

Μελετώντας τον πίνακα Α μπορούμε να εξάγουμε ορισμένα συμπεράσματα: (a) Είναι φανερό ότι οι μικροί γείτονες είναι κατά προτίμηση SB γαλαξίες,

(β) Όλοι οι μι
μοοί γείτονες σε απόσταση μεγαλύτερη από $\sim 30h^{-1}$ kpc εμφανίζονται να είναι SB γαλαξίες,

(γ) Η μεγάλη πλειοψηφία των SB γαλαξιών βρίσκονται σε απόσταση $\geq 30 h^{-1}~{\rm kpc}$ από τον κεντρικό AGN,

(δ) Όλοι οι μη-ενεργοί γείτονες των Seyfert ανήκουν στην κατηγορία των μεγάλων και γιγαντιαίων συνοδών,

(ε) Οι περισσότεροι γαλαξίες οι οποίοι είναι AGN ή τουλάχιστον επιδεικνύουν ένα βαθμό πυρηνικής δραστηριότητας σε συνδυασμό με χαρακτηριστικά Starburst ανήκουν και αυτοί στις ίδιες κατηγορίες (μεγάλοι και γίγαντες).

Τα παραπάνω υποδεικνύουν ότι ένας μικρός γαλαξίας επηρεάζεται πάντοτε από την αλληλεπίδρασή του με έναν μεγαλύτερο γείτονα και μετατρέπεται σε Starburst γαλαξία. Πρέπει όμως να αναφέρουμε σε αυτό το σημείο, την πιθανότητα οι μικροί γαλαξίες να παρουσιάσουν αυξημένη αστρογένεση προκαλούμενη από τις αλληλεπιδράσεις, αλλά να μην εμφανίσουν ποτέ πυρηνική δραστηριότητα. Αυτό μπορεί να οφείλεται στην έλλειψη μελανής οπής ικανής μάζας στους μικρούς γαλαξίες (Wang,

IIINAKAZ A										
Οι γειτονικοί γαλαξίες των Seyfert γαλαξιών συναρτήσει της διαφοράς										
των φαινόμενων μεγεθών τους, των αποστάσεων τους και του τύπου τους.										
Τύπος/απόστ.	10	20	30	40	50	60	70	80	90	100
no	М	Г	μΓ			Γ	Г	Μ		М
SB		Μ		μ	μ	μ	μμμ	μ	μΓμ	Γ
ТО		μ				Γ	Γ	Μ		
AGN	ΓΣ	Γ								

ΠΙΝΑΚΑΣ Α

*Με τονισμένη γραμματοσειρά σημειώνουμε τους γείτονες των Sy2 γαλαξιών.

Kauffmann 2007). Εάν αυτό είναι σωστό, μόνο οι γαλαξίες οι οποίοι έχουν υποστεί μία μεγάλη συγχώνευση στο παρελθόν είναι ικανοί να παρουσιάσουν πυρηνική δραστηριότητα και ενδέχεται αυτός να είναι ο λόγος που οι γαλαξίες οι οποίοι φιλοξενούν AGN να είναι κυρίως προγενέστερου τύπου (early type galaxies) (π.χ. Marquez & Moles 1994; Moles, Marquez, & Perez 1995; Ho et al. 1997; Knapen et al. 2000; Wake et al. 2004). Σε αυτό επίσης, μπορεί να οφείλεται ο μεγάλος αριθμός Starburst γαλαξιών γύρω από τους γαλαξίες των δειγμάτων μας. Παρόλα αυτά, η απουσία μικρών starburst γαλαξιών σε απόσταση μικρότερη των $30h^{-1}$ kpc υποδεικνύει ότι σε μικρές αποστάσεις ίσως να εμφανίζεται ο ενεργός πυρήνας. Ένας μεγάλος γείτονας όμως, δύναται να βρίσκεται σε οποιαδήποτε κατάσταση ή ακόμα και να παραμένει γενικά ανεπηρέαστος από τις αλληλεπιδράσεις.

Η μοφφολογία του γαλαξία, η μάζα της μελανής οπής ή ακόμα και πιο πολύπλοκα θέματα, όπως το spin της μελανής οπής ή η ένταση της πίεσης της ακτινοβολίας από το AGN θα μπορούσαν να παίζουν επίσης σημαντικό ρόλο στην μακροβιότητα του Starburst και στην τροφοδοσία την μελανής οπής.

3.4 Εφμηνεία των αποτελεσμάτων.

3.4.1 Ζεύγος αλληλεπιδρώντων γαλαξιών: Ο κεντρικός ενεργός γαλαξίας.

Σε αυτό το πεφάλαιο συνοψίζουμε τα αποτελέσματα μας παι επιχειρούμε να τα ερμηνεύσουμε με ένα εξελικτικό σενάριο, το οποίο έχει παρουσιαστεί, εν μέρει, στα προηγούμενα κεφάλαια. Αυτό που στις μέρες μας είναι αδιαμφισβήτητο, είναι ο οόλος των αλληλεπιδοάσεων στη δημιουογία ενός γαλαξία Starburst. Μοριακά νέφη οδηγούνται προς τα κεντρικά τμήματα του γαλαξία και καθώς συμπιέζονται ευνοούν την δημιουργία αστέρων, με αποτέλεσμα την εμφάνιση έντονης δραστηριότητας αστρογένεσης. Κατά την άποψη μας, αυτό είναι επίσης αρχετό για να οδηγηθεί ύλη στον πυρήνα για την τροφοδοσία της κεντρικής μελανής οπής. Παρόλο που ο ακριβής μηχανισμός δεν είναι αχόμα γνωστός, στο τοπιχό σύμπαν ένας πολύ αργός ρυθμός προσαύξησης μάζας στη μελανή οπή, της τάξης των $\dot{M} = 10^{-6(\pm 1)} M_{\odot} \cdot Myr^{-1}$, είναι αρκετός για να την τροφοδοτήσει και να ενεργοποιήσει τον πυρήνα (π.χ. Ho, 2008). Θεωρητικά, αυτό μπορεί να επιτευχθεί με ποικίλους τρόπους: από την πίεση της, προερχόμενης από το νεαρό Starburst ακτινοβολίας, από τους υπερκαινοφανείς στην περιοχή γύρω από τον πυρήνα ή ακόμα και από τις αρχικές διαταραχές λόγω της αλληλεπίδρασης. Η μόνη διαφορά μεταξύ των παραπάνω είναι ότι η τελευταία περίπτωση δεν προβλέπει μια χρονική καθυστέρηση μεταξύ της εκκίνησης του Starburst και του AGN, το οποίο, όπως έχουμε ήδη συζητήσει, είναι αυτό που φαίνεται πραγματικά να συμβαίνει. Όποιος όμως και αν είναι ο μηχανισμός, το αποτέλεσμα είναι η τροφοδοσία της κεντρικής μελανής οπής και η ενεργοποίηση του πυρήνα, πιθανώς ~ 0.5 Gyr μετά από την αρχική αλληλεπίδραση και την εμφάνιση του Starburst.

Είναι εμφανές ότι δεν μπορούμε να ισχυριστούμε πως, με την έναρξη του φαινομένου του AGN, τερματίζεται αυτομάτως το Starburst. Θα πρέπει να υποθέσουμε την ύπαρξη μιας περιόδου κατά την οποία AGN και Starburst συνυπάρχουν. Όμως, εφόσον η προσαυξανόμενη μάζα στη μελανή οπή, η οποία είναι αναγχαία για να εκκινήσει τον πυρήνα, είναι τόσο μικρή, η εμφάνιση του ενεργού πυρήνα πρέπει να συμβαίνει σχετικά γρήγορα. Σε αυτήν την αρχική φάση, η ακτινοβολία του πυρήνα είναι ακόμα πολύ απορροφημένη από τα μοριακά νέφη, στο εσωτερικό των οποίων συνεχίζεται η γένεση αστέρων, με αποτέλεσμα την ύπαρξη μεταβατικής φάσης, με τα μικτά χαρακτηριστικά ενός γαλαξία Starburst/Sy2. Ο πιθανότερος τρόπος να πυριαρχήσει το AGN, εξοντώνοντας το Starburst, είναι μέσω της (θεωρητιπά προβλεπόμενης) ανάδρασης (feedback): ακτινοβολία από τον πυρήνα απωθεί το υλικό από το χοντινό περιβάλλον του, με αποτέλεσμα τον τερματισμό της αστρογένεσης χαι το "στραγγαλισμό" του Starburst. Η διαδικασία αυτή πρέπει επίσης να διαρκέσει κάποιο χρόνο, στη διάρκεια του οποίου, καθώς το Starburst χάνεται, κυριαρχεί το Sv2 ακολουθούμενο τελικά από ένα μη απορροφημένο Sy1, όταν πλέον η αστρογένεση έχει πάψει. Αυτό πιθανώς συμβαίνει 1Gyr μετά από την αρχική διαταραχή.

Η ανάδραση όμως από το AGN δεν διαλύει μόνο τα μοριακά νέφη, όπου λαμβάνει χώρα η αστρογένεση, αλλά επίσης και τα νέφη προσαύξησης, προκαλώντας έτσι τον αυτό-στραγγαλισμό του (self-regulated AGN, βλ. Silk & Rees 1998; King 2003; Di Matteo et al. 2005; Murray et al. 2005; Springel et al. 2005a, Khalatyan et al.

2008). Είναι πιθανό λοιπόν, η Sy1 κατάσταση να είναι μία μικρής διάρκειας φάση, η οποία χαραχτηρίζεται από το μέγιστο της πυρηνιχής δραστηριότητας και ακολουθείται από την συνεχή απόσβεση του φαινόμενου του AGN. Τελικά, η ανάδραση διώχνει όχι μόνο τα μοριακά νέφη που ευθύνονται για την απορρόφηση και την προσαύξηση αλλά επίσης και το υλικό της περιοχής προέλευσης των φαρδιών γραμμών εκπομπής (BLR), με αποτέλεσμα την εμφάνιση ενός μη απορροφημένου Sy2 γαλαξία που ακολουθείται (καθώς ο ουθμός επαύξησης συνεχίζει να μειώνεται) από ένα γαλαξία AGN χαμηλού ιονισμού (LINER). Ενδείξεις ότι η BLR περιοχή εξαφανίζεται σε χαμηλούς ουθμούς επαύξησης της μελανής οπής και ότι το 75% του πληθυσμού των αντικειμένων LINER είναι μη απορροφημένα έχουμε από την ανάλυση των δεδομένων του Palomar (π.χ. Ho, 2008). Στην περίπτωση όπου η BLR περιοχή είναι ακόμα παρούσα όταν ο ρυθμός επαύξησης έχει μειωθεί πλέον σε τέτοιο βαθμό ώστε ο ιονισμός να είναι αρχούντως χαμηλός που να μην παρατηρείται Seyfert αντιχείμενο, ενδέχεται να παρατηρήσουμε ένα LINER γαλαξία τύπου Ι αντί του μη απορροφημένου Sy2. Τα δεδομένα του Palomar υποδειχνύουν ότι οι LINER που παρουσιάζουν φαρδιές γραμμές εκπομπής στο φάσμα τους ανέρχονται στο ένα τέταρτο του συνολικού πληθυσμού τους. Τέλος, για να καλύψουμε όλες τις πιθανές περιπτώσεις, αναφέρουμε ότι εάν η BLR περιοχή διαλυθεί πριν από τα νέφη που προκαλούν την απορρόφηση, τότε ο γαλαξίας Sy1 δεν εμφανίζεται ποτέ και ο απορροφημένος Sy2 ακολουθείται απ' ευθείας από τον μη απορροφημένο Sy2. Τελικώς, το LINER μετατρέπεται σε ένα χαμηλού ιονισμού μεταβατικό αντικείμενο που παρουσιάζει μικτά χαρακτηριστικά, αυτά ενός LINER και ενός Starburst γαλαξία, ενώ στη συνέχεια πιθανώς "σβήνει " και επανεμφανίζεται ως κανονικός γαλαξίας.

Το παραπάνω σενάριο προτείνει μία χυχλιχή διαδιχασία η οποία οδηγεί έναν κανονικό αλληλεπιδρώντα γαλαξία να διέλθει από τις φάσεις του Starburst και διαφόρων τύπων ενεργών πυρήνων και να ξαναγυρίσει στην "κανονικότητα". Δεν είναι προφανώς ένα απλοποιημένο μοντέλο, αλλά οπωσδήποτε προσφέρει μία ενοποιημένη θεώρηση του φαινομένου των ενεργών πυρήνων, βάσει της οποίας μπορούμε να εξηγήσουμε την ύπαρξή όλων των γαλαξιών που παρουσιάζουν γραμμές εκπομπής στο φάσμα τους. Συνδυάζει διάφορα ήδη προτεινόμενα σενάρια μεταξύ Starburst και AGN γαλαξιών ή μεταξύ διαφόρων τύπων AGN σε μία μοναδική διαδρομή η οποία να καλύπτει όλο το διάγραμμα BPT. Είναι επίσης πολύ σημαντικό γιατί προβλέπει την ύπαρξη δύο διαφορετικών πληθυσμών Sy2 αντικειμένων, ο ένας να προηγείται και ο άλλος να ακολουθεί την Sy1 φάση. Οι γαλαξίες που απαρτίζουν τον απορροφημένο Sy2 πληθυσμό έχουν κουμμένη περιοχή φαρδιών γραμμών εκπομπής (HBLR), ενώ οι μη απορροφημένοι όχι. Η κυκλική ροή του σεναρίου μπορεί να είναι επαναλαμβανόμενη για το ίδιο αντιχείμενο. Η άποψή μας είναι ότι σε ένα διαρχώς εξελισσόμενο χαι μεταλλασσόμενο σύμπαν, ένα τέτοιο σενάριο είναι πολύ πιο πιθανό από το σενάριο της ενοποίησης, το οποίο προσφέρει μια σαφώς πιο στατική εικόνα των AGN. Παρόλα αυτά, το πιθανότερο είναι ο προσανατολισμός να παίζει και αυτός σημαντικό ρόλο στη φάση μεταξύ των απορροφημένων Sy2 και των Sy1 αντικειμένων, κατά τη διάρκεια της οποίας τα νέφη που απορροφούν τις φαρδιές γραμμές εκπομπής αποκτούν τοροειδή μορφολογία.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

3.4.2 Ζεύγος αλληλεπιδοώντων γαλαξιών: Ο γειτονικός γαλαξίας.

Θα εξετάσουμε τώρα τι συμβαίνει στον γαλαξία ο οποίος προχαλεί τις διαταραχές, το οποίο πιστεύουμε εξαρτάται χυρίως από το μέγεθός του (αλλά χαι από την ταχύτητα προσέγγισης, την απόσταση κ.τ.λ.). Όπως συζητήσαμε νωρίτερα, οι αλληλεπιδράσεις οδηγούν μοριαχά νέφη προς τις κεντρικές περιοχές του γαλαξία με αποτέλεσμα τη δημιουργία ενός Starburst. Εάν ο γαλαξίας είναι τόσο μικρός ώστε να μην έχει αρκετά μαζική μελανή οπή στο κέντρο του, τότε δεν μετατρέπεται ποτέ σε ενεργό γαλαξία με αποτέλεσμα να μην υπάρξει ανάδραση από τον πυρήνα και να παρατηρούμε την ισχυρής έντασης αστρογένεση για πολύ μεγαλύτερο χρονικό διάστημα. Αυτό μπορεί πιθανώς να εξηγήσει γιατί βρίσκουμε τους περισσότερους μικρούς γείτονες σε φάση έντονης αστρογένεσης ή Starburst, ανεξαρτήτως από τη φάση του αλληλεπιδρώντος AGN ή BIRG. Επιπρόσθετα, οι γείτονες των Sy1 γαλαξιών τείνουν να είναι λιγότερο ιονισμένοι από τους αντίστοιχους των Sy2 και να εμφανίζουν γηραιότερους πληθυσμούς αστέρων. Αυτή είναι η πιο άμεση απόδειξη ότι πραγματικά οι Sy1 εμφανίζονται μεταγενέστερα από τους Sy2. Σε περίπτωση που ο συνοδός γαλαξίας είναι αρχετά μεγάλος ώστε να φιλοξενεί στο χέντρο του μια μαζιχή μελανή οπή, τότε αναμένουμε να παρατηρήσουμε όλα όσα περιγράψαμε στην προηγούμενη ενότητα.

3.4.3 Συμπεράσματα.

Είτε ενεργοί, είτε Starburst γαλαξίες, οι γείτονες των Sy1 γαλαξιών μοιάζουν να είναι ένας εντελώς διαφορετικός, πιο εξελιγμένος πληθυσμός από τον αντίστοιχο των Sy2. Τα αποτελέσματα αυτά ενδεικνύουν ότι ο χρόνος που χρειάζεται για να εμφανιστεί AGN δραστηριότητα τύπου 1 πρέπει να είναι μεγαλύτερος από τον αντίστοιχο που απαιτείται για να "αποδράσει" ένας βαρυτικά αδέσμευτος συνοδός γαλαξίας από το κοντινό περιβάλλον του ή για μια προχωρημένη συγχώνευση τους (evolved merger). Και στις δύο περιπτώσεις ο χρόνος αυτός είναι $\sim 10^9 yr$. Εάν το σενάριο μας είναι σωστό, τότε υπάρχουν δύο διαφορετικοί τύποι Sy2 γαλαξιών: οι αποροροφημένοι, οι οποίοι προϋπάρχουν της Sy1 φάσης και οι μη απορροφημένοι, οι οποίοι εμφανίζονται αργότερα και δεν πρέπει να έχουν συνοδούς. Εάν αυτό ισχύει, η περεταίρω διαίρεση του πληθυσμού των Sy2 σε απορροφημένους και μη θα μας οδηγήσει σε ακόμα μεγαλύτερες διαφορές τους σε σχέση με τους Sy1, τουλάχιστον όταν μελετάμε το περιβάλλον τους.

Παίρνοντας υπόψη μας όλα τα αποτελέσματα αυτής της μελέτης, η χρήση ενός μεγάλου δείγματος AGN για την αναζήτηση πιθανών αλληλεπιδράσεων, χωρίς επιπλέον διάκριση των διαφορετικών φασματικών τύπων τους, θα μπορούσε να εισάγει στην ανάλυση μας μεγάλα συστηματικά σφάλματα. Οι ισχυρές αλληλεπιδράσεις μπορούν να παρατηρηθούν μόνο μέχρι την πρώτη Sy2 φάση του εξελικτικού φαινόμενου. Είναι ευνόητο λοιπόν ότι και μόνο η προσθήκη του τεράστιου πληθυσμού των LINER σε μία τέτοια στατιστική μελέτη θα ήταν καταστροφική σε οποιαδήποτε εξαγωγή συμπερασμάτων.

Υποστηφίζουμε επίσης ότι οι Starburst γαλαξίες, σε καμία πεφίπτωση, δεν πφέπει να θεωφούνται ανενεφγοί γαλαξίες, εφόσον η σχέση Starburst/AGN είναι πολύ

πιθανή και τα μικτά αντικείμενα είναι αποδεδειγμένο ότι υπάρχουν. Σε κάθε περίπτωση, οι διαφορετικοί ενεργοί γαλαξίες θα πρέπει να αντιμετωπισθούν σαν ξεχωριστές κατηγορίες.

Εν κατακλείδι, ολοκληφώνοντας αυτό το τμήμα της διατφιβής, πιστεύουμε ότι ενισχύεται πφάγματι η άποψη για μια εξελικτική διαδικασία, η οποία ξεκινάει από τις αλληλεπιδφάσεις μεταξύ δύο γαλαξιών και τους οδηγεί σε διάφοφες φάσεις πυφηνικής δφαστηφιότητας και ισχυφής αστφογένεσης. Αυτή η δφαστηφιότητα πφέπει κάποια στιγμή επίσης να σταματήσει και βασικό φόλο σε αυτό φαίνεται να παίζει η ανάδφαση από τον ενεφγό πυφήνα. Τέλος, ο εξελικτικός αυτός κύκλος μποφεί να επαναληφθεί μέσω μίας νέας γαλαξιακής αλληλεπίδφασης.

Κεφάλαιο 3. Μελέτη περιβάλλοντος ενεργών γαλαξιών

Κεφάλαιο 4

Ενεργοί γαλαξιαχοί πυρήνες σε σμήνη γαλαξιών

4.1 Εισαγωγή.

Αναμφίβολα, ο καλύτερος τρόπος για την εύρεση ενεργών γαλαξιών είναι μέσω παρατηρήσεων ακτινών-Χ, οι οποίες έχουν το πλεονέκτημα ότι ο μεγαλύτερος αριθμός πηγών που ανιχνεύονται είναι AGN. Μεγάλο ενδιαφέρον επικεντρώνεται ειδικά στα σμήνη γαλαξιών όπου, παρότι τα οπτικά δεδομένα ανέδειξαν την έλλειψη γαλαξιών με γραμμές εκπομπής (Osterbrock 1960, Gisler 1978, Dressler et al. 1985), οι παρατηρήσεις ακτινών-Χ ανακάλυψαν εκπληκτικά μεγάλο αριθμό σημειακών πηγών (π.χ. Bechtold et al. 1983, Henry & Briel 1991, Lazzati et al. 1998). Ειδικά μετά την εκτόξευση του δοουφόρου Chandra, σημαντικές υπερπυκνότητες σημειακών πηγών σε σχέση με το πεδίο βρέθη καν σε αρκετά σμήνη με μέση ερυθρομετάθεση (Cappi et al. 2001 z=0.5, Martini et al. 2002 z=0.15, Molnar et al. 2002 z=0.32, Johnson et al. 2003 z=0.83, Martini et al. 2006 0.05 < z < 0.31, D'Elia et al. 2004 z=0.5). Παρόλα αυτά, πιο πρόσφατες μελέτες με μεγαλύτερο πλήθος σμηνών γαλαξιών (Cappelluti et al. 2005, Ruderman & Ebeling 2005, Branchesi et al. 2007) κατέληξαν σε παρόμοια αποτελέσματα για το σύνολο των δειγμάτων τους, αλλά όχι και για όλα τα σμήνη ξεχωριστά. Σημειώνουμε όμως, ότι οι Kim et al. (2004) δεν βρίσκουν καμία διαφορά στην πυχνότητα των πηγών στα σμήνη και στα πεδία.

Ο αφιθμός των AGN ανά σμήνος σε αυτές τις μελέτες ποικίλει σημαντικά. Ένα χαφακτηφιστικό του σμήνους που θα μποφούσε να παίζει σημαντικό φόλο στην πεφιεκτικότητα του σε ενεφγούς γαλαξίες είναι και η διασποφά ταχυτήτων στο εσωτεφικό του (velocity dispersion). Συγκεκφιμένα, εφόσον θεωφούμε ότι οι αλληλεπιδφάσεις μεταξύ των γαλαξιών και ειδικά οι συγχωνεύσεις (mergers) οδηγούν στη δημιουφγία AGN, θα πεφιμέναμε τα σμήνη με χαμηλότεφη διασποφά να έχουν και μεγαλύτεφο αφιθμό ενεφγών γαλαξιών. Παφόλο όμως, που κάποιες μελέτες το επιβεβαιώνουν (π.χ. Poppeso & Biviano 2006), άλλες δεν βφίσκουν καμία διαφοφά μεταξύ των κατανομών των ταχυτήτων των ενεφγών και ανενεφγών γαλαξιών στο εσωτεφικό των σμηνών (Martini et al. 2007). Επίσης ένας μεγαλύτεφος αφιθμός AGN θα έπφεπε να υπάφχουν στα εξωτεφικά τμήματα του σμηνών, όπου η διασποφά των ταχυτήτων είναι μικφότεφη. Όμως τα αποτελέσματα των σχετικών μελετών είναι αντιφατικά, με άλλες να βφίσκουν μεγάλο αφιθμό στις εξωτεφικές πεφιοχές του σμήνους (Johnson et al.

Κεφάλαιο 4. Ενεργοί γαλαξιαχοί πυρήνες σε σμήνη γαλαξιών

2003, Gilmour et al. 2007), ενώ άλλες να υποστηρίζουν ότι οι AGN συμπυκνώνονται στην κεντρική περιοχή του σε αποστάσεις μικρότερες από $0.36h^{-1}$ Mpc από το κέντρο τους (Ruderman & Ebeling 2005, Branchesi et al. 2007). Παρόλα αυτά, παλαιότερες εργασίες έχουν δείξει ότι στα "περίχωρα" των σμηνών υπάρχει μεγαλύτερο ποσοστό γαλαξιών που εμφανίζουν γραμμές εκπομπής (Couch & Sharples 1987, Fabricant et al. 1991, Fischer et al. 1998), αν και δεν επικεντρώθηκαν ειδικά στην παρουσία AGN.

Οι παφαπάνω διαφοφές στα αποτελέσματα μποφεί να οφείλονται στις ιδιότητες του κάθε σμήνους, όπως για παφάδειγμα στην πεφιεκτικότητα του σε γαλαξίες που μποφούν να φιλοξενήσουν ενεφγούς πυφήνες. Ελλείψει όμως οπτικών δεδομένων, δεν μποφούμε να καταλήξουμε σε σίγουφα συμπεφάσματα. Μόνο με τη βοήθεια οπτικής φασματοσκοπίας θα μποφούσαμε να ταυτοποιήσουμε τα, ανιχνευμένα στις ακτίνες-Χ, AGN στα σμήνη, δίχως να βασιζόμαστε στη στατιστική αφαίφεση των πιθανώς πφοβαλλομένων, στο επίπεδο του σμήνους, πηγών. Τέτοιου είδους μελέτη επιχειφείται στις εφγασίες των Martini et al. (2002, 2007) και Davis (2003), που βφίσκουν διαφοφετικό αφιθμό AGN ακτινών-Χ στα διάφοφα σμήνη και ότι επίσης η πυκνότητα τους είναι πεφίπου ίδια με αυτή των γαλαξιών του πεδίου. Τα δείγματά τους όμως είναι ιδιαιτέφως μικφά (οι Martini et al. μελέτησαν 8 σμήνη, ο Davies 1) για να συμπεφάνουν το λόγο για τον οποίο ο αφιθμός των AGN ποικίλει μεταξύ των σμηνών.

Σκοπός μας σε αυτό το κεφάλαιο είναι να διεφευνήσουμε από μια άλλη οπτική γωνία το φαινόμενο των AGN σε σμήνη γαλαξιών. Για να οδηγηθούμε σε χφήσιμα συμπεφάσματα, θα συγκφίνουμε τα αποτελέσματα μας στις ακτίνες-Χ με οπτικά δεδομένα του SDSS. Συγκεκφιμένα, θέλουμε να εξακφιβώσουμε την συμβατότητα της όποιας πιθανής υπεφπυκνότητας των AGN, που παφατηφείται στα σμήνη μέσω των ακτινών-Χ, με την αναμενόμενη υπεφπυκνότητα των οπτικών γαλαξιών, που πάντα υπάφχει στα σμήνη. Στην πεφίπτωση που το πυκνό πεφιβάλλον εντός των σμηνών δεν επιδφά στο φαινόμενο των ενεφγών πυφήνων, οι υπεφπυκνότητες AGN και οπτικών γαλαξιών οφείλουν να συμπίπτουν. Οποιοδήποτε άλλο αποτέλεσμα θα μας υποδείξει τον πιθανό φόλο των σμηνών στην ενίσχυση ή υποβάθμιση του φαινομένου των AGN.

4.2 Ανάλυση αποτελεσμάτων.

Έχοντας υπολογίσει τις υπερπυχνότητες (§2.4.6), τόσο των πηγών στις ακτίνες-Χ όσο και των οπτικών γαλαξιών του SDSS στα 16 σμήνη, μπορούμε να παραστήσουμε γραφικά τα αποτελέσματα μας. Στο διάγραμμα 4.1 το κάθε σημείο αναπαριστά την υπερπυχνότητα των AGN στο κάθε σμήνος σε συνάρτηση με την υπερπυχνότητα σε

Σχήμα 4.1: δ_x προς δ_o . Η διαγώνια γραμμή είναι η $\delta_x = \delta_o$. Τα τρίγωνα παριστούν τα σμήνη με όριο φωτεινότητας $L \sim 2 \times 10^{42}$ erg s⁻¹, ενώ οι κύκλοι με $L = 10^{42}$ erg s⁻¹

οπτικούς γαλαξίες του SDSS, εντός του ο
ρίου φαινόμενης λαμπρότητας $m^* < m < m^* + 0.5$. Τα τρίγωνα είναι τα σμήνη με όριο φωτεινότητας
 $L \sim 2 \times 10^{42} \ {\rm erg \ s^{-1}}$, ενώ οι κύκλοι με $L = 10^{42} \ {\rm erg \ s^{-1}}$. Παρόλο που αυτό έχει ληφθεί υπόψη στη συνάρτηση logN-logS για τον υπολογισμό των αναμενόμενων πηγών στο πεδίο, τα σμήνη αναπαρίστανται με διαφορετικά σχήματα σε όλα τα διαγράμματα του κεφαλαίου, για εντοπισμό πιθανών διαφορών. Εξάλλου, όλοι οι γαλαξίες με φωτεινότητα
 $L > 10^{42} \ {\rm erg \ s^{-1}}$

Σχήμα 4.2: Όπως στο σχήμα 4.1, αλλά έχουμε χρησιμοποιήσει μεγαλύτερο εύρος φαινόμενων μεγεθών κατά 0.5 mag.

από αυτό το όριο. Συνεπώς, δεν έχουμε σημαντικό πρόβλημα διαφορετικών πληθυσμών. Η διαγώνια γραμμή στο σχήμα σημειώνει την εξίσωση των υπερπυκνοτήτων $\delta_x = \delta_o$. Πάνω από αυτή τη γραμμή η υπερπυκνότητα των πηγών είναι μεγαλύτερη από την αντίστοιχη των οπτικών γαλαξιών, ενώ κάτω από αυτήν ισχύει το αντίστροφο. Είναι φανερό ότι η υπερπυκνότητα που παρατηρούμε σε οπτικούς γαλαξίες είναι σχεδόν πάντα μεγαλύτερη από την αντίστοιχη των ΑGN. Μοναδική εξαίρεση αποτελούν τα δύο σμήνη γαλαξιών που βρίσκονται σχεδόν πάνω στη γραμμή.

Αυτό που έχει μεγάλο ενδιαφέρον είναι ότι τα δύο αυτά σμήνη έχουν την μικρότερη πλουσιότητα σε γαλαξίες (βλ. πίνακα VI, παράρτημα D) από τα 16 συνολικά, σύμφωνα με τις μετρήσεις του Abell (1958) (§2.3.4), αλλά και τη χαμηλότερη οπτική υπερπυκνότητα στο SDSS σύμφωνα και με τις δικές μας μετρήσεις. Παρόλο που ο αριθμός δεν είναι στατιστικά σημαντικός, το γεγονός αυτό είναι μία ένδειξη της πιθανής επίδρασης του περιβάλλοντος των σμηνών στην δημιουργία AGN, που θα

αναλύσουμε στα συμπεράσματα μας.

Σχήμα 4.3: Υπεφπυκνότητες δ_x (γεμάτα σύμβολα) και δ_o (ανοιχτά σύμβολα) σε συνάφτηση με την εφυθφομετάθεση. Το δ_o έχει υπολογιστεί για γαλαξίες με $m^* < m < m^* + 0.5$. Το σχήμα των συμβόλων όπως στην εικόνα 4.1.

Στο σχήμα 4.2 σχεδιάζουμε το ίδιο διάγραμμα, με τη μόνη διαφορά ότι προσθέτουμε στα οπτικά δεδομένα και τους πιο λαμπρούς γαλαξίες με $m^* - 0.5 < m$. Αυτό ενδέχεται να παίζει κάποιο ρόλο στα αποτελέσματα μας, εφόσον ίσως οι ενεργοί γαλαξίες να φιλοξενούνται από τους πιο λαμπρούς γαλαξίες του σμήνους. Παρόλα αυτά, παρατηρούμε ότι τα αποτελέσματα μας δεν διαφοροποιούνται σημαντικά.

Ένα ακόμα ενδιαφέρον σημείο της μελέτης μας είναι η ύπαρξη πιθανής εξέλιξης των ιδιοτήτων των σμηνών, σε ότι αφορά την περιεκτικότητα τους σε ενεργούς γαλαξίες, σε σχέση με την ερυθρομετάθεσή τους. Εφόσον τα δεδομένα μας καλύπτουν μια διαφορά ερυθρομεταθέσεων από z=0.073 έως και z=0.279, μία τέτοιου είδους διερεύνηση είναι δυνατή, παρόλο που ο αριθμός των σμηνών είναι μικρός. Στα σχήματα 4.3 και 4.4 σχεδιάζονται τα αποτελέσματα μας για γαλαξίες με $m^* < m < m^* + 0.5$ και

Κεφάλαιο 4. Ενεργοί γαλαξιαχοί πυρήνες σε σμήνη γαλαξιών

 $m^* - 0.5 < m < m^* + 0.5$ αντίστοιχα. Τα σύμβολα ακολουθούν τη λογική των προηγουμένων σχημάτων του κεφαλαίου. Τα ανοιχτά σύμβολα είναι οι υπερπυκνότητες δ_0 , ενώ τα γεμάτα οι δ_x .

Καμία στατιστικά σημαντική τάση δεν παρατηρείται στη συμπεριφορά των σμηνών στις συγκεκριμένες ερυθρομεταθέσεις. Η υπερπυκνότητα σε οπτικούς γαλαξίες και η αντίστοιχη σε πηγές ακτινών-X δε δείχνουν να εξελίσσονται με την ερυθρομετάθεση, τουλάχιστον από z=0.278 μέχρι z=0.073 που βρίσκουμε τα σμήνη μας. Επιπλέον ούτε και η σχέση ανάμεσα στις δύο φαίνεται να παρουσιάζει κάποια εξέλιξη. Τα αποτελέσματά μας θα συζητηθούν στην επόμενη ενότητα.

Σχήμα 4.4: Όπως στο σχήμα 4.3, αλλά το δ_0 έχει υπολογιστεί για γαλαξίες με m*-0.5 < $m < m^* + 0.5$.

4.3 Συμπεράσματα.

Τα συμπεράσματα που μπορούμε να εξάγουμε από την παραπάνω ανάλυση είναι τα κάτωθι:

• Το πυκνό γαλαξιακό πεφιβάλλον εντός των σμηνών γαλαξιών, όχι μόνο δεν ενισχύει την δφαστηφιότητα AGN, αλλά τη συφφικνώνει (suppression) σε σημαντικό βαθμό. Σε όλα τα σμήνη του δείγματός μας η υπεφπυκνότητα των AGN είναι χαμηλότεφη από την αντίστοιχη των λαμπφών οπτικών γαλαξιών, εκτός από την πεφίπτωση των δύο σμηνών με τη χαμηλότεφη υπεφπυκνότητα οπτικών γαλαξιών, όπου $\delta_o \cong \delta_x$. Αυτό το αποτέλεσμα, παφόλο που δεν είναι στατιστικά ιδιαίτεφα σημαντικό, ενισχύει τα αποτελέσματα μας, εφόσον φαίνεται ότι η χαμηλότεφη σχετικά υπεφπυκνότητα των γαλαξιών σε αυτά τα σμήνη επιτφέπει τη δημιουφγία μεγαλύτεφου συγκριτικά αφιθμού AGN.

• Οι υπεφπυχνότητες, είτε των οπτικών γαλαξιών είτε των AGN, δεν εξελίσσονται σημαντικά σε συνάφτηση με την εφυθφομετάθεση από z=0.279 έως και z=0.073. Σημειώνουμε όμως, ότι το δείγμα δεν είναι αφκετά μεγάλο για να μας δώσει στατιστικά σημαντικά αποτελέσματα. Πφέπει να αναφέφουμε ακόμα, ότι οι Branchesi et al. (2007) επίσης δεν βφίσκουν εξέλιξη των AGN σε συνάφτηση με την εφυθφομετάθεση, ενώ οι Eastman et al. (2007) καταλήγουν στο ακφιβώς αντίθετο αποτέλεσμα, αλλά για μεγαλύτεφές εφυθφομεταθέσεις, από $z \sim 0.6$ έως και $z \sim 0.2$.

Σαν πιθανές αιτίες για τη συρρίχνωση του φαινομένου των AGN εντός των σμηνών αναφέρουμε:

(a) τις μεγάλες διασπορές γαλαξιαχών ταχυτήτων στο εσωτερικό των σμηνών, οι οποίες αποτρέπουν τις δραστικές (effective) αλληλεπιδράσεις και ιδιαίτερα τις συγχωνεύσεις των γαλαξιών, και

(β) την απογύμνωση του κούου αερίου των γαλαξιών, λόγω της πίεσης εμβολισμού (ram pressure) από το θερμό αέριο εντός του σμήνους (Inter Cluster Medium, από εδώ και πέρα ICM) ή/και διεργασίες εξάτμισης (Giovanelli et al. 1985). Η πίεση εμβολισμού εξαρτάται από την ταχύτητα του κάθε γαλαξία εντός του σμήνους και την πυκνότητα του ICM, ενώ η εξάτμιση από τη θερμοκρασία του ICM. Πολύ πιθανά τόσο η πίεση όσο και η εξάτμιση να επηρεάζουν τη δημιουργία ενεργών πυρήνων στο εσωτερικό των σμηνών. Όμως, η πυκνότητα και η θερμοκρασία του ICM, καθώς και οι ταχύτητες των γαλαξιών διαφέρουν από σμήνος σε σμήνος, κάνοντας εμφανή την ανάγκη λεπτομερούς ανάλυσης για να διευκρινιστεί ο ρόλος τους.

(γ) Τέλος, πρέπει να αναφέρουμε την "παλιρροϊκή απογύμνωση" (tidal stripping) του αέριου των γαλαξιών, λόγω αλληλεπιδράσεων με ταχέως διερχόμενους γαλαξίες (grazing encounters). Όντως, σχετικές μελέτες έχουν δείξει ότι οι ελλειπτικοί γαλαξίες στα κέντρα των σμηνών είναι συρρικνωμένοι σε σχέση με τους γαλαξίες του πεδίου (π.χ. Natarajan et al. 2002, Cypriano et al. 2006), παρόλο που παλαιότερα είχε αμφισβητηθεί η δραστικότητα αυτού του φανομένου (π.χ. Giovanardi et al. 1983, Warmels 1984).

Κεφάλαιο 4. Ενεργοί γαλαξιαχοί πυρήνες σε σμήνη γαλαξιών

Κεφάλαιο 5

Επίλογος.

Στόχος αυτής της διατριβής ήταν η μελέτη του περιβάλλοντος διαφόρων τύπων AGN για να διευχρινιστεί ο ρόλος του στην ενεργοποίηση, το φασματικό τύπο και τη γενικότερη εξέλιξή τους. Θα κλείσουμε την παρούσα διατριβή συνοψίζοντας τα βασικά μας αποτελέσματα:

(a) Το μικρής κλίμακας περιβάλλον ($\delta u \le 600 \text{ km/s}$ και $D \le 100h^{-1} \text{ kpc}$) φαίνεται να επηρεάζει το φασματικό τύπο των AGN, ευνοόντας τη δημιουργία γαλαξιών Seyfert 2. Αν οι Sy2 είναι η πρώτη φάση της "ενεργότητας" των AGN, τότε οι κοντινές αλληλεπιδράσεις με γειτονικούς γαλαξίες συνιστούν το μηχανισμό ενεργοποίησης του πυρήνα. Η φασματική μελέτη του κοντινότερου γείτονα των AGN έδειξε ότι οι γείτονες των διαφορετικών τύπων AGN (Sy1, Sy2) αποτελούν διαφορετικούς πληθυσμούς, με αυτούς των Sy2 να είναι πιο ισχυρά ιονισμένοι.

(β) Το μεγάλης κλίμακας πεφιβάλλον ($\delta u \leq 1000 \text{ km/s}$ και $D \leq 1h^{-1} \text{ Mpc}$) δεν φαίνεται να παίζει κάποιο φόλο στην ενεφγοποίηση των AGN. Όποιες διαφοφές παφατηφήθηκαν των Sy1 και Sy2 οφείλονταν αποκλειστικά στη μοφφολογία των γαλαξιών που τους φιλοξενούν και όχι στο φασματικό τους τύπο.

(γ) Το πυκνό περιβάλλον εντός των σμηνών γαλαξιών φαίνεται να συρρικνώνει την δραστηριότητα των AGN. Ανεξάρτητα από το μηχανισμό που παράγει αυτό το αποτέλεσμα, η αναλογία της πυκνότητας σε AGN προς την πυκνότητα λαμπρών οπτικών γαλαξιών είναι μικρότερη στα σμήνη από ότι στο πεδίο.

Εν κατακλείδι, συμπεφαίνουμε ότι οι κοντινές αλληλεπιδφάσεις μεταξύ των γαλαξιών φαίνεται να παίζουν σημαντικό φόλο στη ενεφγοποίηση του φαινομένου των ενεφγών πυφήνων. Τα αποτελέσματα μας συνάδουν στην κατεύθυνση μιας εξελικτικής ακολουθίας των φασματικών τύπων των ενεφγών γαλαξιών, ξεκινώντας από αλληλεπίδφαση, σε φάση Starburst, σε Sy2, σε Sy1, σε LINER. Φυσικά, η εξελικτική αυτή ακολουθία εξαφτάται και από πολλές άλλες παφαμέτφους, όπως τη λαμπφότητα τους, την πεφιεκτικότητα τους σε αέφιο, την μάζα της μελανής οπής κ.τ.λ. Με οδηγό τα αποτελέσματα αυτής της διατφιβής, θα διευφύνουμε τις μελέτες μας σε μεγαλύτεφα δείγματα στο μέλλον.

Κεφάλαιο 5. Επίλογος.

Παράρτημα Α

Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

Α.1 Εισαγωγή.

Σε αυτό το παφάφτημα θα πεφιγφάψουμε αναλυτικά κάθε βήμα που ακολουθούμε για την ανάλυση των φασματοσκοπικών μας δεδομένων. Τα φάσματα, όπως αναφέφθηκε και παφαπάνω, παφατηφήθηκαν με τον "Φασματογφάφο και Κάμεφα Αμυδφών Αντικειμένων" (Faint Object Spectrograph and Camera, LFOSC) (Zickgraf et al. 1977) στο 2.1 μέτφων τηλεσκόπιο Guillermo Haro στην Cananea του Μεξικού, το οποίο ανήκει στο "Εθνικό Ινστιτούτο Αστφοφυσικής, Οπτικής και Ηλεκτφονικής" (Instituto National de Astrofisica, Optica y Electronica, INAOE). Υιοθετήθηκαν τέτοιες φυθμίσεις του φασματογφάφου έτσι ώστε να καλύπτει την φασματική πεφιοχή από 4200 έως 9000 Angstrom με διασποφά 8.2 Angstrom/pix.

Σχήμα Α.1: Το αποτυπωμένο πάνω στο CCD φάσμα ενός γαλαξία από τον "Φασματογράφο και Κάμερα Αμυδρών Αντικειμένων" στο τηλεσκόπιο 2.1 μέτρων Guillermo Haro στην Cananea του Μεξικού.

Παράρτημα Α. Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

Η εικόνα A.1 είναι το ανεπεξέργαστο φάσμα ενός ενεργού γαλαξία που λάβαμε από το LFOSC. Ο οριζόντιος άξονας, ο οποίος καλείται χωρικός, είναι παράλληλος με τη σχισμή του φασματογράφου και έχει διαστάσεις μήκους. Στον κάθετο άξονα επιτυγχάνεται από τον φασματογράφο η διασπορά στα διάφορα μήκη κύματος, του φωτός των αντικειμένων. Βλέπουμε επίσης τα αχρησιμοποίητα εικονοστοιχεία στα άκρα του CCD, τα οποία είναι οι ίδια σε όλα τα φάσματα και πρέπει καταρχήν να αποκοπούν. Στα επόμενα κεφάλαια θα παρακολουθήσουμε τη διαδικασία επεξεργασίας του συγκεκριμένου φάσματος.

Για να εξάγουμε το τελικό μας ζητούμενο από τα δεδομένα, το οποίο σε αυτή την περίπτωση είναι η ερυθρομετατόπιση των γαλαξιών, χρησιμοποιήσαμε πακέτα του λογισμικού "IRAF" σε περιβάλλον LINUX REDHAT. Η συνολική διαδικασία αναλύεται βήμα προς βήμα και ταυτόχρονα παρατίθενται και διάφορα διαγράμματα για την καλύτερη κατανόηση, καθώς και εικόνες του φάσματος μετά από κάθε βήμα έτσι ώστε να είναι ξεκάθαρη η σκοπιμότητα της όλης διαδικασίας. Περιληπτικά μπορούμε να χωρίσουμε όλα τα πακέτα που χρησιμοποιήσαμε σε τέσσερεις διαφορετικές κατηγορίες, ανάλογα με την χρησιμότητα τους: (α) Διόρθωση των διαφόρων σφαλμάτων που οφείλονται στον ηλεκτρονικό καταγραφέα (CCD) και στα οπτικά μέρη του τηλεσκοπίου, (β) απαλοιφή περιττών στοιχείων από το φάσμα (κοσμική ακτινοβολία, γραμμές του ουρανού), (γ) εξαγωγή του φάσματος του αντικειμένου και (δ) εξομάλυνση της ροής στο κάθε φάσμα (εφόσον ο φασματογράφος δεν είναι το ίδιο ευαίσθητος σε όλα τα μήκη κύματος). Οι διάφοροι όροι που χρησιμοποιούνται από το πακέτο παρατίθενται στην αγγλική παράλληλα με την μετάφραση τους στην ελληνική.

A.2 Bias (ηλεκτρονικός θόρυβος)

Σχήμα Α.2: Μέσος όφος 10 εκθέσεων ηλεκτφονικού θοφύβου στο CCD.

Ακόμα και με κλειστό το κλείστρο του τηλεσκοπίου και την απουσία φωτός, το CCD λαμβάνει κάποιες μη μηδενικές μετρήσεις. Αυτό ονομάζεται "μηδενικό επίπεδο" (zero level) και πρέπει να αφαιρεθεί από όλες τις παρατηρήσεις μας. Για να προσδιορίσουμε αυτό το συστηματικό σφάλμα, πήραμε 10 τέτοιου τύπου εκθέσεις κάθε νύχτα παρατήρησης και χρησιμοποιώντας το πακέτο *imcombine* υπολογίσαμε το μέσο όρο τους, έτσι ώστε να εξαλείψουμε την επίδραση των κοσμικών ακτινών που εμφανίζονται στην κάθε έκθεση χωριστά. Το αποτέλεσμα του πακέτου *imcombine* το ονομάζουμε zero.fits. Στο σχήμα Α.2 βλέπουμε και ένα χαρακτηριστικό παράδειγμα του zero.fits.

Με το πακέτο *imarith* αφαιρούμε από όλα τα φάσματα μας το zero.fits ώστε να ελαχιστοποιήσουμε τον ηλεκτρονικό θόρυβο στο CCD.

A.3 Flatfielding (επιπεδοποίηση)

Η διαδικασία flatfielding χρησιμοποιείται για να εξαλείψουμε τις συστηματικές διακυμάνσεις στην κατανομή του φωτός στο CCD οι οποίες οφείλονται : (α) Στις διακυμάνσεις της ευαισθησίας από εικονοστοιχείο σε εικονοστοιχείο αλλά και σε ελαττωματικά εικονοστοιχεία, (β) στα πιθανά ελαττώματα των οπτικών μερών του τηλεσκοπίου που οδηγούν στην ανομοιοκατανομή του φωτός και (γ) στις σκιές των κόκκων σκόνης. Για να λάβουμε τα flatfields που χρειαζόμαστε ώστε να διορθώσουμε τα δεδομένα μας, πρέπει να εκθέσουμε το φασματογράφο μας σε μία πηγή η οποία να φωτίζει ομοιόμορφα ολόκληρο το CCD. Για το σκοπό αυτό χρησιμοποιούνται δύο

Σχήμα Α.3: Έκθεση επιπεδοποίησης 30 δευτεgoλέπτων σε λευκό πλαίσιο.

μέθοδοι: έκθεση σε ένα λευκό πλαίσιο στο εσωτερικό του θόλου ή σε ένα κενό τμήμα του ουρανού. Η δεύτερη μέθοδος είναι καλύτερη μιας και προσεγγίζει περισσότερο τη διαδικασία λήψης των δεδομένων μας αλλά χρειάζεται περισσότερο χρόνο για να

Παράρτημα Α. Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

επιτευχθεί. Στη συγκεκοιμένη περίπτωση λαμβάναμε 10 εκθέσεις των 30 δευτερολέπτων στρέφοντας το τηλεσκόπιο μας σε ένα λευκό πλαίσιο στο εσωτερικό του θόλου. Στην εικόνα Α.3 βλέπουμε μία τέτοια έκθεση. Στη συνέχεια με το πακέτο imcombine του IRAF εξάγουμε το μέσο όρο από τις 10 εκθέσεις κάθε νύχτας έτσι ώστε να βελτιώσουμε την ποιότητα της επιπεδοποίησης.

Σχήμα Α.4: Μέσος όgος 10 εκθέσεων επιπεδοποίησης (flatfin.fits).

Στην περίπτωση φασματοσχοπικών δεδομένων, που είναι και η περίπτωση μας, πριν διορθώσουμε τα φάσματα μας, πρέπει να αφαιρέσουμε από το flat.fits ορισμένα χαραχτηριστικά κατά μήχους του άξονα της διασποράς, τα οποία οφείλονται στον τρόπο με τον οποίο λάβαμε τα flatfields και δεν εμφανίζονται στα πραγματικά φάσματα. Πιο συγκεκριμένα, οι κύριες αιτίες εμφάνισης τέτοιων χαρακτηριστικών είναι (α) η μεγάλη διαφορά θερμοκρασίας μεταξύ των ουράνιων αντικειμένων που παρατηρούμε και της λάμπας που χρησιμοποιούμε για να φωτίσουμε το λευκό πλαίσιο και (β) η εξαρτημένη από το μήκος κύματος ανακλαστικότητα του πλαισίου. Για να εξαλείψουμε τέτοιου είδους επιδράσεις χρησιμοποιούμε το πακέτο response το οποίο μας βοηθά να αφαιρέσουμε τις μεγάλης κλίμακας διακυμάνσεις στην διεύθυνση του μήκους κύματος που τρόπο λήψης των flatfields. Το αποτέλεσμα είναι η νορμαλοποιημένη εικόνα Α.4 (flatfin.fits), η οποία είναι εμφανώς διαφορετική από την 3.3. Το τελικό βήμα είναι η διαίρεση όλων των φασμάτων μας με το flatfin.fits με τη χρήση του πακέτου *imarith*.

Α.4 Καθαρισμός κοσμικής ακτινοβολίας

Ένα ακόμα βήμα, η δυσκολία του οποίου εξαφτάται εξολοκλήφου από το χφόνο έκθεσης της κάθε εικόνας, είναι ο καθαφισμός της κοσμικής ακτινοβολίας από τα φάσματα μας. Συγκεκφιμένα, όσο μεγαλύτεφος είναι ο χφόνος έκθεσης του κάθε

Σχήμα Α.5: Παράδειγμα φάσματος πριν την αφαίρεση των κοσμικών ακτινών.

αντικειμένου τόσο μεγαλύτερη είναι και η πιθανότητα τυχαίας πρόσπτωσης κοσμικών ακτινών στο CCD. Υπάρχουν αρκετά πακέτα αυτόματου καθαρισμού κοσμικής ακτινοβολίας τα οποία μπορούν να λειτουργήσουν στο περιβάλλον του λογισμικού IRAF. Το συγκεκριμένο λογισμικό όμως προσφέρει και τη δυνατότητα "χειροκίνητου καθαρισμού", όπου ο χρήστης μπορεί να αφαιρέσει τις κοσμικές ακτίνες μία προς μία. Συγκεκριμένα, όπως είναι φανερό και από το σχήμα Α.5, η κοσμική ακτινοβολία αναπαρίσταται από μερικά μαυρισμένα εικονοστοιχεία που εμφανίζονται σαν ανωμαλία στην συνολική εικόνα. Οι τιμές του σήματος σε αυτά τα εικονοστοιχεία είναι πολύ υψηλότερες από τα γειτονικά τους. Για να γίνει η αφαίρεση μίας ανωμαλίας, το πρόγραμμα εξετάζει συνολικά την μορφολογία των εικονοστοιχείων σε μια ευρύτερη περιοχή που περιλαμβάνει την ανωμαλία και εξομαλύνει όλη την περιοχή ώστε να την εξαλείψει. Στην εικόνα Α.6, όπου παρατίθεται η ίδια περιοχή του CCD πριν και μετά τον καθαρισμό της κοσμικής ακτίνας, βλέπουμε ένα τέτοιο παράδειγμα εξομάλυνσης. Το πρόγραμμα υπολογίζει, για την συγκεκριμένη περιοχή, τις τιμές του σήματος σε κάθε εικονοστοιχείο και στη συνέχεια προσθέτει ή αφαιρεί από αυτές έτσι ώστε να εξαλείψει μεγάλες διαχυμάνσεις μεταξύ χάθε ειχονοστοιχείου και των γειτονιχών του. Ο μοναδικός κίνδυνος του αυτόματου καθαρισμού είναι να αφαιρεθεί από το φάσμα κάποια γραμμή εκπομπής (η οποία πιθανώς να ομοιάζει με κοσμική ακτίνα) ή το ακριβώς αντίθετο. Στη συγκεκριμένη εργασία χρησιμοποιήσαμε πρώτα το πακέτο cosmicrays του IRAF μόνο για τις πιο εμφανείς περιπτώσεις κοσμικών ακτινών και στη συνέχεια την πιο επώδυνη μέθοδο του μη αυτόματου καθαρισμού για τις υπόλοιπες, ώστε να αποφύγουμε την απώλεια κάποιας γραμμής εκπομπής. Τα αποτελέσματα αυτών των διαδικασιών φαίνονται στο σχήμα Α.7

Χρησιμοποιώντας το πακέτο *imedit*, ο χρήστης έχει τον έλεγχο της διαδικασίας αφαίρεσης κοσμικών ακτινών και μπορεί να επιλέξει το σχήμα και το μέγεθος της περιοχής που θα χρησιμοποιηθεί για την εξομάλυνση. Συγκεκριμένα, όταν η κοσμική

Παράρτημα Α. Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

Σχήμα Α.6: Αφιστεφά απεικονίζεται η μοφφολογία μίας μικφής πεφιοχής στο CCD που πεφιλαμβάνει μία κοσμική ακτίνα. Δεξιά, η ίδια πεφιοχή μετά την εξομάλυνση. Στο δεξί διάγφαμμα η κλίμακα του κατακόφυφου άξονα είναι μικφότεφη από την αντίστοιχη αφιστεφά με αποτέλεσμα οπτικά η πεφιοχή να φαίνεται πιο διαταφαγμένη.

Σχήμα Α.7: Παράδειγμα φάσματος μετά την αυτόματη αφαίρεση των κοσμικών ακτινών με χρήση του πακέτου cosmicrays (αριστ.) και μετά την αφαίρεση από τον χρήστη των κοσμικών ακτινών με χρήση του πακέτου imedit (δεξ.).

ακτίνα δε βρίσκεται κοντά στο φάσμα μας ή σε κάποια γραμμή του ουρανού, μπορούμε εύκολα να επιλέξουμε μία κυκλική περιοχή γύρω από αυτήν. Όταν όμως δεν συμβαίνει αυτό, τότε η περιοχή που θα χρησιμοποιηθεί για την εξομάλυνση πρέπει να επιλεγεί με περισσότερη προσοχή. Αν λοιπόν, η ακτίνα βρίσκεται κοντά, αλλά όχι πάνω σε κάποιο φάσμα, το εγγύτατο περιβάλλον της αποτελείται από εικονοστοιχεία χαμηλού σήματος και πρέπει να εξομαλυνθεί σύμφωνα με αυτά. Κατά συνέπεια ο χρήστης οφείλει να επιλέξει μία περιοχή που να μην περιλαμβάνει εικονοστοιχεία του κοντινού φάσματος, τα οποία εξορισμού έχουν υψηλό σήμα. Αν αντιθέτως, η ακτίνα βρίσκεται πάνω στο φάσμα, πρέπει να επιλεγεί μία περιοχή που να περιλαμβάνει μόνο εικονοστοιχεία

Α.5. Βαθμονόμηση άξονα διασποράς και διόρθωση γεωμετρικών σφαλμάτων.

του φάσματος και όχι εκτός αυτού. Σε περίπτωση που η περιοχή εξομάλυνσης δεν επιλεγεί σωστά, η διαδικασία θα έχει ως αποτέλεσμα την αλλοίωση του φάσματος σε εκείνο το σημείο.

Εκτός από τη σημασία του να μην αλλοιωθούν τα φάσματα των αντικειμένων που θέλουμε να μελετήσουμε, εξίσου σημαντικό είναι να μην αλλοιωθούν και οι γραμμές του ουρανού. Πιθανή αλλοίωση θα καθιστούσε δυσκολότερη την αφαίρεση τους αργότερα.

A.5 Βαθμονόμηση άξονα διασποράς και διόρθωση γεωμετρικών σφαλμάτων.

Η διαδικασία η οποία ακολουθείται σε αυτό το κεφάλαιο οδηγεί στη βαθμονόμηση του άξονα διασποράς σε μονάδες μήκους κύματος (Angstrom). Για το λόγο αυτό, κάθε νύχτα παρατήρησης, λαμβάνουμε φάσματα από λάμπες αερίου He και Ar, των οποίων γνωρίζουμε επακριβώς τα μήκη κύματος των γραμμών εκπομπής, ώστε να τα συγκρίνουμε με τις παρατηρήσεις μας. Στο σχήμα A.8 βλέπουμε ένα παράδειγμα τέτοιου φάσματος. Στη συνέχεια χρησιμοποιούμε το πακέτο *identify* ώστε να

Σχήμα Α.8: Παφάδειγμα φάσματος HeAr.

αναγνωρίσουμε τις γραμμές του φάσματος σύγκρισης. Όπως βλέπουμε και στην εικόνα A.9 (αριστ.), αρχικά είναι αρκετό να αναγνωρίσουμε 4 γραμμές εκπομπής και να αντιστοιχήσουμε το μήκος κύματος τους στα εικονοστοιχεία του άξονα διασποράς στα οποία βρίσκεται το κέντρο της κάθε γραμμής. Τότε το πρόγραμμα επιτυγχάνει τη βέλτιστη γραμμική σχέση μεταξύ μήκους κύματος - εικονοστοιχείων για αυτές τις γραμμές. Για να το καταλάβουμε αυτό καλύτερα θα περιγράψουμε ένα απλοποιημένο παράδειγμα. Έστω ότι το CCD έχει 1000 εικονοστοιχεία κατά μήκος του άξονα διασποράς και εμείς αναγνωρίζουμε στο πρώτο από αυτά μία γραμμή με μήκος κύματος

Σχήμα A.9: Αναγνώριση γραμμών στο φάσμα HeAr (αριστ.) και γραμμική αντιστοιχία (fit) του μήκους κύματος σε συνάρτηση με τον αριθμό των εικονοστοιχείων (δεξ.).

4000 Angstrom και στο 500° μια γραμμή με μήκος κύματος 5000 Angstrom. Στην ιδανική και τέλεια γραμμική περίπτωση αυτό θα σήμαινε ότι στο 1000° εικονοστοιχείο αντιστοιχεί μήκος κύματος 6000 Angstrom και την ίδια γραμμική σχέση (μήκος κύματος = 2 × εικονοστοιχείο + 4000) ακολουθούν και όλα τα υπόλοιπα εικονοστοιχεία του άξονα διασποράς. Η περίπτωση μας όμως δεν είναι ιδανική και αυτό σημαίνει ότι στην πραγματικότητα όλα τα σημεία έχουν μία μικρή απόκλιση από την θέση στην οποία θα έπρεπε να βρίσκονται. Γι'αυτό, μετά την αναγνώριση των 4 γραμμών, βρισκόμαστε αντιμέτωποι με την εικόνα Α.9 (δεξ.), όπου βλέπουμε την απόκλιση των 4 αυτών σημείων από την γραμμική σχέση. Συγκεκριμένα στον οριζόντιο άξονα βλέπουμε το μήκος κύματος, ενώ στον κάθετο την απόκλιση σε Angstrom της πραγματικής θέσης της κάθε γραμμής από τη θέση που έχει στην γραμμική αντιστοιχία που πέτυχε το πρόγραμμα. Σε αυτό το σημείο, αν δεν είμαστε ικανοποιημένοι από την προσέγγιση, μπορούμε να επαναλάβουμε την διαδικασία χρησιμοποιώντας διαφορετικές γραμμές.

Εάν το αποτέλεσμα μας ικανοποιεί, το πρόγραμμα αναγνωρίζει αυτόματα και τις υπόλοιπες γραμμές του φάσματος. Μπορούμε να ελέγξουμε και πάλι το αποτέλεσμα και να επέμβουμε αν θεωρήσουμε ότι μία γραμμή δεν βρίσκεται σε σωστή θέση με αποτέλεσμα την στρέβλωση της αντιστοιχίας γραμμών και μήκους κύματος.

Όταν επιτύχουμε το επιθυμητό αποτέλεσμα και με τη χρήση του πακέτου reidentify, το πρόγραμμα επαναλαμβάνει αυτομάτως την προηγούμενη διαδικασία ανά 10 γραμμές του χωρικού άξονα. Αυτό σημαίνει ότι θα επαναπροσδιορίσει την βέλτιστη γραμμική σχέση μήκους κύματος - εικονοστοιχείου, κατά μήκος της 10ης γραμμής του χωρικού άξονα και κατόπιν της 20ης, της 30ης, κ.ο.κ. Δηλαδή, στην περίπτωση μας, όπου ο χωρικός άξονας έχει 350 γραμμές, η διαδικασία θα επαναληφθεί 35 φορές.

Στη συνέχεια χρησιμοποιούμε το πακέτο fitcoord έτσι ώστε να προσεγγίσουμε όλα τα σημεία που χρησιμοποιήθηκαν στις προηγούμενες διαδικασίες identify και reidentify, με μία δισδιάστατη πλέον εξίσωση μήκους κύματος συναρτήσει εικονοστοιχείων του άξονα διασποράς και εικονοστοιχείων του χωρικού άξονα (f=f(x,y)). Μας δίνεται η δυνατότητα να προβάλουμε στην οθόνη μας τα σημεία και τη διασπορά τους από την εξίσωση και να επέμβουμε αν χρειάζονται διορθώσεις. Το βασικό πρόβλημα είναι ότι πρέπει να προβάλουμε τρεις διαστάσεις (χωρικό άξονα, άξονα διασποράς και

Σχήμα Α.10: Διαγράμματα των σημείων που χρησιμοποιούνται από το πακέτο fitcoord για τη βαθμονόμηση του άξονα διασποράς και τη διόρθωση των γεωμετρικών σφαλμάτων

Παράρτημα Α. Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

διασποφά των σημείων) στην οθόνη. Εφόσον αυτό είναι αδύνατο, μποφούμε να δούμε ανά δύο τις διαστάσεις σε τφία διαφοφετικά διαγφάμματα τα οποία παφατίθενται στην εικόνα Α.10. Στο πφώτο βλέπουμε όλες τις γφαμμές εκπομπής που αναγνωφίστηκαν από το πακέτο identify κατά μήκος του άξονα διασποφάς και όλα τα σημεία που χφησιμοποιήθηκαν από το reidentify ανά δέκα γφαμμές του χωφικού άξονα. Από αυτό το διάγφαμμα καλό είναι να σβήσουμε όλα εκείνα τα σημεία που βρίσκονται στα άκφα του χωφικού άξονα και έχουν συνήθως μεγάλη διασποφά. Τα άλλα δύο διαγφάμματα παφουσιάζουν τη διασποφά των σημείων και έναν άξονα, συμπιέζοντας τον άλλο στο επίπεδο της σελίδας. Παφομοίως και από αυτά τα διαγφάμματα μποφούμε να σβήσουμε όποια σημεία θεωφούμε ότι αποκλίνουν πολύ μέχφι να ικανοποιηθούμε από την προσέγγιση.

Τέλος το πακέτο transform χρησιμοποιεί την δισδιάστατη εξίσωση ώστε να πραγματοποιήσει τις γεωμετρικές διορθώσεις στα φάσματα όλων των αντικειμένων της ίδιας νύχτας παρατήρησης και να βαθμονομήσει τον άξονα διασποράς. Στην εικόνα Α.11 βλέπουμε το διορθωμένο φάσμα.

Σχήμα Α.11: Παράδειγμα φάσματος με βαθμονομημένο τον άξονα διασποράς.

A.6 Αφαίφεση υποβάθφου (background extraction)

Το τελευταίο βήμα πριν επιχειφήσουμε να εξάγουμε το φάσμα των αντικειμένων είναι η αφαίφεση των γφαμμών του ουφανού και γενικά του υποβάθφου. Αυτό μποφεί να γίνει με την χφήση του πακέτου background. Αφχικά μας ζητείται από το πφόγφαμμα να οφίσουμε τις πεφιοχές που θεωφούμε ως υπόβαθφο γύφω από το φάσμα μας. Αυτό το επαναλαμβάνουμε ανά 50 γφαμμές του άξονα διασποφάς. Ο λόγος αυτής της επανάληψης είναι η πιθανότητα το φάσμα μας να μην είναι ακφιβώς κάθετο στον χωφικό άξονα. Ενδέχεται για παφάδειγμα στην 50η γφαμμή του άξονα διασποφάς το κέντφο του φάσματος να βφίσκεται στο 300° εικονοστοιχείο του χωφικού άξονα, αλλά στην 500στή γφαμμή να έχει μετατοπιστεί στο 303°. Η παφαπάνω λοιπόν, διαδικασία μας επιτφέπει να επαναπφοσδιοφίσουμε το κέντφο και το φάφδος του φάσματος μας ανά 50 γφαμμές, τις οποίες ονομάζουμε γφαμμές αναφοφάς, έτσι ώστε να αποφύγουμε λανθασμένη αφαίφεση του υποβάθφου. Στην εικόνα Α.12 βλέπουμε

δύο παραδείγματα στα οποία ορίζουμε το υπόβαθρο κατά μήκος διαφορετικών τομών, κάθετων στον άξονα διασποράς. Ο οριζόντιος άξονας είναι ο χωρικός, ενώ ο κάθετος μας δίνει τον αριθμό των μετρήσεων σε κάθε εικονοστοιχείο. Παρατηρούμε επίσης ότι η τάξη της συνάρτησης που χρησιμοποιούμε ώστε να προσεγγίσουμε το υπόβαθρο διαφέρει στις δύο εικόνες. Στην πρώτη είναι πρώτης τάξης ενώ στην δεύτερη είναι πέμπτης τάξης.

Τέλος το πρόγραμμα αφαιρεί το υπόβαθρο από όλες τις γραμμές του άξονα διασποράς, χρησιμοποιώντας για την κάθε μία την περιοχή και τη συνάρτηση που ορίσαμε για την πιο κοντινή σε αυτήν γραμμή αναφοράς. Η εικόνα Α.13 είναι το "καθαρό" πλέον φάσμα του αντικειμένου.

Σχήμα Α.12: Παραδείγματα αφαίρεσης υποβάθρου από τομές κάθετες στον άξονα διασποράς. Μπορούμε να διακρίνουμε τα όρια των περιοχών του υποβάθρου, που καθορίζονται από τις μπάρες κάτω από το φάσμα. Στην πρώτη περίπτωση η προσέγγιση του υποβάθρου γίνεται από τη συνάρτηση chebyshev 1ης τάξης (αριστ.), ενώ στη δεύτερη από τη συνάρτηση chebyshev 5ης τάξης (δεξ.).

Σχήμα Α.13: Τελική μορφή του φάσματος μετά την αφαίρεση του υποβάθρου.

Α.7 Εξαγωγή του φάσματος

Είμαστε τώρα έτοιμοι να εξάγουμε το φάσμα των αντιχειμένων μας. Για το σχοπό αυτό χρησιμοποιούμε το παχέτο apall του IRAF. Εάν δεν επιλέξουμε αλλιώς, στην οθόνη εμφανίζεται μία τομή χάθετη στο μέσον του άξονα διασποράς (ειχόνα A.14). Επίσης μπορούμε να επιλέξουμε να εμφανιστεί το άθροισμα ενός αριθμού τομών γύρω από το μέσον. Ο οριζόντιος άξονας είναι ο χωριχός, ενώ ο χάθετος είναι ο αριθμός των μετρήσεων σε χάθε ειχονοστοιχείο. Στο παράδειγμά μας βλέπουμε το άθροισμα 10 τομών (γραμμές 281-290). Αρχιχά το πρόγραμμα προσδιορίζει αυτομάτως το ειχονοστοιχείο του χωριχού άξονα όπου βρίσκεται το χέντρο του φάσματος. Η χρήση παραπάνω της μίας τομής βελτιώνει την αχρίβεια της παραπάνω διαδιχασίας. Στη συνέχεια το πρόγραμμα, με χαθορισμένο βήμα, σαρώνει όλο τον άξονα διασποράς, επαναλαμβάνοντας τους ίδιους υπολογισμούς. Το αποτέλεσμα είναι ένα σύνολο σημείων τα οποία χαθορίζουν την θέση του χέντρου του φάσματος στον χωρικό άξονα σε συνάρτηση με τη θέση τους στον άξονα διασποράς. Τέλος,

Σχήμα Α.14: Πλάτος ανοίγματος για την εξαγωγή του φάσματος.

προβάλλονται στην οθόνη μας (εικόνα A.15) έτσι ώστε να τα προσεγγίσουμε με μια συνάρτηση, που θα καθορίσει το κέντρο του φάσματος κατά μήκος όλου του άξονα της διασποράς και βάση της οποίας θα γίνει η εξαγωγή του. Στο παράδειγμά μας παρατηρούμε ότι η απόκλιση του κέντρου από το ένα άκρο του άξονα διασποράς έως το άλλο είναι μόνο ένα εικονοστοιχείο. Συγκεκριμένα κατά μήκος 570 εικονοστοιχείων του άξονα διασποράς το κέντρο μετατοπίζεται περίπου από το εικονοστοιχείου 135.75 του χωρικού άξονα στο 136.75. Εφόσον σβήσουμε τα σημεία που έχουν τη μεγαλύτερη απόκλιση από την προσέγγιση μας, εξάγουμε το φάσμα του αντικειμένου (εικόνα A.16).

Στο σημείο αυτό, για το σχοπό αυτής της εργασίας που είναι η εξαγωγή της ερυθρομετατάθεσης, τα περισσότερα φάσματα είναι έτοιμα. Παρόλα αυτά για περαιτέρω ανάλυση των φασμάτων αυτών, όπως για παράδειγμα αν θέλουμε να καθορίσουμε το είδος του γαλαξία (Sy1, Sy2, Starburst) όπου χρειαζόμαστε τις πραγματικές εντάσεις των γραμμών, πρέπει να προχωρήσουμε ένα βήμα παρακάτω και να διορθώσουμε

Σχήμα Α.15: Προσέγγιση των δεδομένων μας από μία συνάρτηση (εδώ spline δευτέρας τάξης).

Σχήμα Α.16: Τελική μορφή του φάσματος μας μετά την διαδικασία apall.

το φάσμα μας σύμφωνα με τη ροή κάποιου γνωστού αστέρα (Standard Star). Ένας τέτοιος αστέρας παρατηρείται κάθε νύχτα ώστε να χρησιμοποιηθεί για αυτό το σκοπό.

Α.8 Διόρθωση της ροής

Όπως αναφέραμε παραπάνω, κάθε νύχτα παρατηρούμε επίσης έναν γνωστό αστέρα ο οποίος χρησιμοποιείται για την διόρθωση της ροής των παρατηρηθέντων φασμάτων. Επεξεργαζόμαστε το φάσμα του με τον ίδιο ακριβώς τρόπο που αναφέραμε σε όλα τα προηγούμενα κεφάλαια και το εξάγουμε με τη διαδικασία *apall*. Βλέπουμε το εξαγόμενο φάσμα ενός τυπικού αστέρα στην εικόνα A.17.

Στο σημείο αυτό πρέπει επίσης να αναφέρουμε ότι για τη σωστή διόρθωση της ροής οφείλουμε να γνωρίζουμε τον χρόνο έκθεσης κάθε αντικειμένου καθώς και την μάζα του ατμοσφαιρικού αέρα που παρεμβάλλεται κάθε φορά, που έχει ως αποτέλεσμα την απορρόφηση τμήματος της ακτινοβολίας του αντικειμένου. Αυτή μπορούμε να την υπολογίσουμε εφόσον γνωρίζουμε την ώρα παρατήρησης του αντικειμένου και τη

Παράρτημα Α. Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

Σχήμα Α.17: Φάσμα αστέρα.

γωνία μεταξύ της ευθείας παρατήρησης και του ζενίθ στον τόπο του παρατηρητή. Τα δεδομένα αυτά στη συνέχεια(Exposure time και Airmass) θα εισαχθούν στο αρχείο fits κάθε εικόνας με τη χρήση της εντολής *hedit*.

Με τη χρήση του πακέτου standard το πρόγραμμα βρίσκει τα καταχωρημένα δεδομένα του αστέρα που παρατηρήσαμε από μία βάση δεδομένων και εξάγει την διορθωμένη ροή για την απορρόφηση σε όλα τα μήκη κύματος. Κατά τη διαδικασία αυτή έχουμε τη δυνατότητα να αφαιρέσουμε όλες τις γραμμές απορρόφησης από το φάσμα έτσι ώστε να απομείνει μόνο το συνεχές. Η διαδικασία αυτή φαίνεται στην εικόνα A.18.

Σχήμα Α.18: Αφαίφεση γραμμών απορρόφησης από το φάσμα αστέρα.

Για να εξάγουμε τελικώς τη "συνάφτηση ευαισθησίας" (Sensitivity function) του φασματογφάφου σε συνάφτηση με το μήκος κύματος χφησιμοποιούμε το πακέτο sensfunc. Βρισκόμαστε αντιμέτωποι με τρία διαγφάμματα στην οθόνη (εικόνα A.19) μας, όπου μας δίνεται η δυνατότητα να κάνουμε τις αλλαγές που επιθυμούμε ώστε να επιτύχουμε μία καλή πφοσέγγιση του συνεχούς φάσματος του αστέφα από μία συνάφτηση την οποία ονομάζουμε "συνάφτηση ευαισθησίας". Στο πάνω διάγφαμμα βλέπουμε την

Σχήμα Α.19: Εξαγωγή της συνάρτησης ευαισθησίας του φασματογράφου με τη χρήση του πακέτου sensfunc. (Για λεπτομέρειες δείτε το κείμενο).

ευαισθησία σε συνάρτηση με το μήκος κύματος. Τα σημεία αναπαριστούν τα δεδομένα που έχουμε εξάγει με τη βοήθεια του πακέτου *apall*, ενώ η συνεχόμενη καμπύλη είναι η συνάρτηση με την οποία τα προσεγγίζουμε. Κάτω αριστερά βλέπουμε τη διασπορά των σημείων από την συνάρτηση και κάτω δεξιά την διορθωμένη ροή του ίδιου του αστέρα. Στο παράδειγμά μας, μπορούμε να διακρίνουμε στο διάγραμμα της ευαισθησίας και σε αυτό της διασποράς ορισμένα σημεία, περίπου σε μήκος κύματος 4800 Angstrom, τα οποία αποκλίνουν πολύ από την καμπύλη και πρέπει να σβηστούν.

Εφόσον είμαστε ικανοποιημένοι από την προσέγγιση, εξάγουμε την συνάρτηση ευαισθησίας (εικόνα A.20) και με το πακέτο calibrate τη χρησιμοποιούμε ώστε να διορθώσουμε όλα τα φάσματα της ίδιας ημέρας και να βαθμονομήσουμε τον κάθετο άξονα σε μονάδες ροής. Στην εικόνα A.21 μπορούμε να δούμε την διόρθωση που επιτυγχάνουμε με την παραπάνω διαδικασία.

Σχήμα Α.20: Συνάρτηση ευαισθησίας γνωστού αστέρα.

Σχήμα Α.21: Το φάσμα ενός ενεργού γαλαξία πριν (πάνω) και μετά (κάτω)την διόρθωση της ροής.

Α.9 Υπολογισμός της ερυθρομετατόπισης.

Στη συγκεκριμένη εργασία, για τις περισσότερες περιπτώσεις υπολογισμού της ερυθρομετατόπισης, χρησιμοποιήσαμε από τρεις έως και επτά γραμμές του φάσματος των γαλαξιών. Στα φάσματα των μη ενεργών γαλαξιών χρησιμοποιήθηκαν οι γραμμές απορρόφησης NaI, MgI, FeI, H_{α} , ενώ σε αυτά των ενεργών γαλαξιών χρησιμοποιήθηκαν επιπλέον οι γραμμές εκπομπής $H\alpha$, $H\beta$, [O III], [O I], [N II] και οι δύο γραμμές [S II]. Η ερυθρομετατόπιση z δίνεται από τον τύπο :

$$z = \frac{\lambda}{\lambda_0} - 1$$

όπου λ το μήκος κύματος της γραμμής που μετρήσαμε στα φάσματά μας και λ_0 το μήκος κύματος της γραμμής στο εργαστήριο. Το σφάλμα σ στον υπολογισμό των ερυθρομετατοπίσεων είναι στατιστικό και υπολογίζεται από τον τύπο :

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{1}^{N} (\overline{x} - x_j)^2}$$

όπου N το πλήθος των γραμμών που μετρήσαμε και \overline{x} η μέση τιμή της ερυθρομετατόπισης:

$$\overline{x} = (\sum_{1}^{N} x_j) / N$$

Από τους παραπάνω τύπους είναι φανερό ότι όσο περισσότερες γραμμές διαθέτουμε τόσο μικρότερο το στατιστικό σφάλμα στον υπολογισμό της ερυθρομετατόπισης.

Τέλος παραθέτουμε ένα παράδειγμα προσδιορισμού της ερυθρομετατόπισης. Στο φάσμα του γειτονικού γαλαξία του MRK 699 αναγνωρίσαμε τρεις γραμμές εκπομπής και μία απορρόφησης. Συγκεκριμένα αναγνωρίσαμε τις :

$$H\alpha: \quad \lambda = 6786A, \quad \lambda_o = 6563A$$
$$H\beta: \quad \lambda = 5022A, \quad \lambda_o = 4861A$$
$$[S II]: \quad \lambda = 6943A, \quad \lambda_o = 6721A$$
$$NaI: \quad \lambda = 5444A, \quad \lambda_o = 5270A$$

όπου λ_o τα αντίστοιχα μήκη κύματος για αυτές τις γραμμές στο εργαστήριο.

Η ερυθρομετατόπιση που υπολογίζουμε από τις παραπάνω τέσσερεις γραμμές είναι αντίστοιχα : 0.0341, 0.0331, 0.0330, 0.0330 και η μέση τιμή τους

$$z = \frac{0.0341 + 0.0331 + 0.0330 + 0.0330}{4} = 0.0334$$

ενώ το σφάλμα τους :

$$\sigma = \pm \sqrt{\frac{0.0007^2 + 0.0003^2 + 0.0004^2 + 0.0004^2}{3}} = \pm 0.0005$$

Παρομοίως προσδιορίζουμε τις ερυθρομετατοπίσεις και των υπολοίπων γαλαξιών.

Παράρτημα Α. Ανάλυση φασματοσκοπικών δεδομένων με το λογισμικό "IRAF"

Παράρτημα Β

Ανάλυση δεδομένων Ακτίνων-Χ με το λογισμικό SAS

Η πρωτογενής επεξεργασία των δεδομένων ακτινών-Χ, δηλαδή η επεξεργασία των αρχείων που στέλνει ο δορυφόρος XMM-Newton σε κατάλληλης μορφής αρχεία, έγινε χρησιμοποιώντας το επιστημονικό πακέτο ανάλυσης δεδομένων σε ακτίνες-X SAS v6.0. Για την τελική εξαγωγή των πηγών ακολουθήθηκαν τα παρακάτω βήματα:

Δημιουργία εικόνων.

Για κάθε παρατήρηση, δηλαδή για κάθε πεδίο του XMM χωριστά, δημιουργούμε εικόνες στην ενεργειακή περιοχή 0.5-8 keV. Κάθε μια από τις εικόνες αυτές περιέχει τα δεδομένα μόνο από την αντίστοιχη ενεργειακή περιοχή. Τα δεδομένα με ενέργειες μεγαλύτερες από 8 keV δεν χρησιμοποιούνται στην ανάλυσή μας, διότι στις ενέργειες αυτές υπάρχει μια σημαντική αλλοίωση του πραγματικού σήματος λόγω της αλληλεπίδρασης των φωτονίων με το υλικό του ανιχνευτή. Για να αυξήσουμε τον λόγο σήματος προς θόρυβο και να μπορέσουμε να εντοπίσουμε όσο το δυνατόν πιο αμυδρές πηγές, ενώσαμε τα αρχεία δεδομένων από τους δύο ανιχνευτές. Προσθέσαμε δηλαδή τα φωτόνια που παρατηρήθηκαν από κάθε ανιχνευτή χωριστά (MOS ή PN) σε κάθε εικονοστοιχείο του πεδίου. Με τον τρόπο αυτό μπορούμε να ανιχνεύσουμε πηγές οι οποίες σε κάθε έναν ανιχνευτή χωριστά μπορεί να μην είναι εύκολο, λόγω του πολύ μικρού αριθμού φωτονίων, να ανιχνευτούν. Αντίθετα, οι ανεξάρτητες εικόνες χρησιμοποιούνται για τον υπολογισμό των φασμάτων των πηγών και ορισμένων δεικτών που δεν μπορούν να υπολογιστούν από την συνολική αθροιστική εικόνα (PN και MOS δεδομένα μαζί) λόγω της διαφορετικής ενεργειακής συμπεριφοράς κάθε ανιχνευτή.

Δημιουργία βοηθητικών αρχείων.

Για κάθε ενεργειακή περιοχή κατασκευάζουμε χάρτες χρόνου οι οποίοι δίνουν τον χρόνο έκθεσης σε κάθε θέση του πεδίου. Επιπλέον δημιουργήσαμε κατάλληλες μάσκες οι οποίες περιγράφουν επακριβώς τη θέση των χαλασμένων ή των ανενεργών εικονοστοιχείων του ανιχνευτή, έτσι ώστε αυτά να μη συμπεριληφθούν στη μελέτη και τέλος τα αρχεία που καθορίζουν την απόκριση του ανιχνευτή σε σχέση με την ενέργεια.

Ανίχνευση των πηγών.

Η ανίχνευση των πηγών γίνεται απαιτώντας η κάθε πηγή που εντοπίζουμε να είναι πραγματική, με μια ελάχιστη πιθανότητα 5σ, και όχι διαταραχή στο υπόβαθρο. Αυτό που υπολογίζουμε είναι πόσες φορές ο συνολικός αριθμός των φωτονίων σε μια περιοχή της εικόνας του πεδίου παρατήρησης είναι μεγαλύτερος από τον αριθμό των φωτονίων του υποβάθρου. Στην συνέχεια, για τις περιοχές αυτές, εξετάζουμε ποια είναι η πιθανότητα $P = \frac{N}{\sqrt{B}}$, όπου N είναι ο συνολικός αριθμός των φωτονίων και B ο αριθμός των φωτονίων του υποβάθρου, ο μεγάλος σχετικά αριθμός φωτονίων στη συγκεκριμένη θέση να μην οφείλεται σε διαταραχές του υποβάθρου. Η έννοια λοιπόν, του ορίου 5σ είναι ότι στη θέση του πεδίου, όπου θεωρούμε ότι υπάρχει μια πηγή ακτίνων-X, η πιθανότητα να είναι πραγματική είναι μεγαλύτερη από 99.99%.

Σχήμα Β.1: Το σμήνος γαλαξιών ABELL2065. Άνω: ποιν την ανίχνευση των σημειακών πηγών. Κάτω: με κόκκινους κύκλους εμφανίζονται οι πηγές των ακτινών-X που ανιχνεύτηκαν και με μπλέ κύκλους συμβολίζουμε την ακτίνα 720 h^{-1} kpc και την εσωτερική ακτίνα του πυρήνα του σμήνους, η οποία και αφαιρείται.

Παράρτημα Β. Ανάλυση δεδομένων Ακτίνων-Χ με το λογισμικό SAS

Παράρτημα C

Χάφτες και φάσματα γαλαξιών.

NGC863 : Sy1

Γείτονας 1 : Ανενεργός

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

MRK1400 : Sy1

Γείτονας 1 : SB

NGC1019 : Sy1

Γείτονας 2 : ΤΟ

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

Γείτονας 1 : SB

Γείτονας4 : SB

1H1142-178 : Sy1

Γείτονας 1 : Ανενεργός

Γείτονας 2 : ΤΟ

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

MRK699 : Sy1

Γείτονας 1 : ΤΟ

NGC7469 : Sy1

Γείτονας 1 : SB

5500 6000 Wavelength (angstroms) 6500

2.50E-1

500

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

NGC526a : Sy1

Γείτονας 2 : Ανενεργός

Γείτονας 1 : AGN

Γείτονας 3 : SB

Γείτονας 4 : SB

NGC5548 : Sy1

Γείτονας 1 : SB

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

NGC6104 : Sy1

Γείτονας 1 : Ανενεργός

ESO545-G013 : Sy2

Γείτονας 1 : SB

Γείτονας 1 : SB

UGC12138 : Sy2

Γείτονας 1 : SB

UGC7064 : Sy2

IRAS00160-0719 : Sy2

Γείτονας 1 : SB

5.00E-15 4.00E-15 3.00E-15 2.00E-15 1.00E-15 4500 5000 5500 6000 Wavelength (angstroms) 6500

ESO417-G016 : Sy2

NGC1241 : Sy2

Γείτονας 1 : SB

NGC1320 : Sy2

Γείτονας 1 : Ανενεργός

MRK612 : Sy2

Γείτονας 1 : Ανενεργός

NGC1358 : Sy2

Γείτονας 2 : Ανενεργός

IC4553 : Sy2

Γείτονας 1 : AGN

NGC7672 : Sy2

Γείτονας 1 : Ανενεργός

NGC7682 : Sy2

Γείτονας 1 : AGN *στο χάρτη βρίσκεται στο κέντρο ο γείτονας διότι, για αγνωστο λόγο, δεν υπήρχε χάρτης με τον NGC7682 στο κέντρο.

Γείτονας 1 : Ανενεργός

Γείτονας 3 : SB

UGG556 : BIRG

Γείτονας 1 : SB

7000

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

UGG835 : BIRG

140

www.manaraa.com

NGC877 : BIRG

Γείτονας 1 : ΤΟ

NGC922 : BIRG

Γείτονας 1 : SB

NGC992 : BIRG

Γείτονας 1 : SB

NGC2785 : BIRG

Γείτονας 1 : SB

Γείτονας 2 : SB

NGC2856 : BIRG

Γείτονας 1 : ΤΟ

المنارك للاستشارات

www.manaraa.com

Παράρτημα C. Χάρτες και φάσματα γαλαξιών.

NGC3221 : BIRG

Γείτονας 1 : Ανενεργός Γείτονας 2 : Ανενεργός

NGC3690 : BIRG

Γείτονας 1 : ΤΟ

Γείτονας 2 : Ανενεργός

NGC5433 : BIRG

Γείτονας 1 : SB

Γείτονας 2 : AGN

NGC5990 : BIRG

Γείτονας 3 : SB

NGC7541 : BIRG

Γείτονας 1 : ΤΟ

NGC7714 : BIRG

Γείτονας 1 : Ανενεργός

NGC7771 : BIRG

Γείτονας 1 : SB

Γείτονας 2 : SB

Γείτονας 3 : ΤΟ

Παράρτημα D

Πίναχες

<u>ΠΙΝΑΚΑΣ Ι</u>

Κατάλογος ενεργών γαλαξιών που βρίσκονται στις περιοχές του ουρανού που καλύπτουν οι κατάλογοι SSRS και CfA2

ONOMA	RA (J2000)	DEC (J2000)	$\mathrm{m}_{\mathrm{B}}^{\star}$	Z	ΤΥΠΟΣ
MRK 335	00 06 19.3	20 12 10	14.00	0.02578	Sy1
NGC 424	01 11 27.8	$-38 \ 04 \ 59$	13.90	0.01166	Sy1
ESO 354-G04	01 51 42.0	-36 11 16	15.08	0.03351	Sy1
NGC 863	02 14 34.7	01 13 57	13.81	0.02700	Sy1
MRK 1400	02 20 13.7	08 12 20	15.60	0.02929	Sy1
MRK 1044	02 30 05.4	-085949	15.25	0.01621	Sy1
NGC 1019	02 38 27.2	01 54 31	14.60	0.02419	Sy1
ESO548-G81	03 42 03.0	-21 14 25	12.92	0.01448	Sy1
NGC 1194	03 03 48.4	$-01\ 06\ 09$	14.70	0.01339	Sy1
NGC 2782	09 14 05.6	40 06 54	12.66	0.00854	Sy1
NGC 3080	09 59 55.9	13 02 43	14.50	0.03546	Sy1
MCG10.16.111	11 18 57.7	58 03 24	15.70	0.02710	Sy1
MRK 739A	11 36 29.4	21 35 46	14.84	0.02965	Sy1
1H1142-178	11 45 40.4	$-18 \ 27 \ 16$	14.70	0.03295	Sy1
MRK 42	11 53 42.1	46 12 42	15.20	0.02467	Sy1
NGC 4235	12 17 09.8	07 11 28	13.20	0.00804	Sy1
MRK 50	12 23 24.1	02 40 44	15.17	0.02300	Sy1
NGC 4593	12 39 39.2	$-05 \ 20 \ 39$	12.21	0.00899	Sy1
NGC 4748	12 52 12.2	-13 24 54	14.27	0.01369	Sy1
IC4218	13 17 04.4	-02 15 49	14.90	0.01937	Sy1
MRK 1494	15 01 38.7	10 25 10	15.20	0.03074	Sy1

^{*} Στους πίνακες Ι και ΙΙΙ παρατίθονται τα μπλέ μεγέθη του Zwicky από τους καταλόγους CfA2/SSRS. Ενώ στους πίνακες ΙΙ και ΙV τα μπλε μεγέθη O_{MAPS} για λόγους ομοιογένειας (βλ. §2.4.2 και §2.3.6)

ONOMA	RA (J2000)	DEC (J2000)	mB	Z	ΤΥΠΟΣ
UGC9826	15 21 32.8	39 11 57	15.30	0.02943	Sy1
MRK 1098	15 29 40.4	30 29 04	15.10	0.03487	Sy1
NGC 5940	15 31 17.9	07 27 24	14.30	0.03405	Sy1
MRK 290	15 35 52.1	57 54 06	15.50	0.03062	Sy1
IRAS15438+2715	15 45 57.8	27 06 28	14.60	0.03100	Sy1
MRK 291	15 55 07.9	19 11 28	15.00	0.03584	Sy1
UCG 10120	15 59 09.5	35 01 43	14.90	0.03148	Sy1
MRK 699	16 23 45.8	41 04 52	15.40	0.03419	Sy1
NGC 6212	16 43 23.0	39 48 20	15.00	0.03017	Sy1
NGC 7214	22 09 07.7	-27 48 36	13.05	0.02279	Sy1
MRK 915	22 36 46.6	$-12 \ 32 \ 44$	14.82	0.02391	Sy1
NGC 7469	23 03 15.5	08 52 24	13.00	0.01618	Sy1
UM 163	23 30 32.1	$-2 \ 27 \ 47$	15.14	0.03338	Sy1
NGC 7811	24 02 26.2	03 21 09	14.90	0.02552	Sy1
NGC 526A	01 23 54.5	-35 03 54	14.66	0.01910	Sy1.5
UGC 1032	01 27 32.3	19 10 46	13.80	0.01672	Sy1.5
MRK 595	02 41 32.9	07 10 50	15.00	0.02698	Sy1.5
NGC 3516	10 17 39.6	21 41 19	12.50	0.00900	Sy1.5
IC 2637	11 13 49.6	09 35 13	13.90	0.02923	Sy1.5
MCG06.26.012	11 39 14.2	33 55 51	15.40	0.03275	Sy1.5
NGC 4253	12 18 26.8	29 48 46	13.70	0.01293	Sy1.5
UGC 8823	13 53 03.2	69 18 28	14.50	0.03025	Sy1.5
NGC 5548	14 17 59.5	25 08 09	13.10	0.01717	Sy1.5
UGC 9412	14 36 22.0	58 47 37	14.30	0.03145	Sy1.5
IC 1198	16 08 36.2	12 19 46	14.90	0.03383	Sy1.5
NGC 7450	23 00 55.9	-12554	14.00	0.01045	Sy1.5
NGC 7603	23 18 56.6	00 18 10	14.01	0.02900	Sy1.5
ESO545-G013	02 24 40.5	-19 08 27	13.59	0.03380	Sy1.8
MS09428+0950	09 45 29.4	09 36 13	14.30	0.02497	Sy1.8
NGC 3786	11 39 42.8	31 54 33	13.50	0.00910	Sy1.8
MCG-03.34.063	13 22 24.1	$-16\ 43\ 44$	13.50	0.00908	Sy1.8
UGC12138	22 40 17.0	08 03 12	14.64	0.01718	Sy1.8
NGC 17	00 10 58.6	$-12 \ 06 \ 15$	12.41	0.00940	Sy1.9
UGC7064	12 04 43.6	31 10 37	15.50	0.01341	Sy1.9
NGC 5077	13 19 31.4	-12 39 24	14.00	0.02500	Sy1.9
NGC 6104	16 16 30.6	35 42 25	14.10	0.02791	Sy1.9
IRAS 00160-0719	00 18 35.9	$-07 \ 02 \ 57$	15.25	0.01942	Sy2
IC 1657	01 14 07.0	$-32 \ 39 \ 02$	14.36	0.01875	Sy2

ΠΙΝΑΚΑΣ Ι

	П	ΙΝΑΚΑΣ Ι			
ONOMA	RA (J2000)	DEC (J2000)	$m_{\rm B}$	Z	ΤΥΠΟΣ
UM 319	01 23 21.1	-01 58 34	13.12	0.01189	Sy2
ESO 353-G09	01 31 50.9	$-33 \ 07 \ 09$	14.80	0.01613	Sy2
UGC 1214	01 43 57.6	02 21 01	14.07	0.01658	Sy2
IRAS01475-0740	01 50 02.7	$-07 \ 25 \ 48$	15.50	0.01767	Sy2
UGC 1395	01 55 21.9	06 36 45	14.00	0.01726	Sy2
IC 184	01 59 50.6	$-06\ 50\ 21$	14.50	0.01737	Sy2
NGC 788	02 01 14.4	-06 49 30	14.87	0.01795	Sy2
IC 1816	02 31 51.2	$-36 \ 40 \ 14$	13.50	0.01360	Sy2
IC 4859	02 49 03.9	-31 10 19	13.66	0.01739	Sy2
ESO 299-G20	02 49 33.6	-38 46 00	13.99	0.02003	Sy2
NGC 1125	02 51 40.4	$-16 \ 38 \ 58$	13.96	0.01670	Sy2
ESO 417-G06	02 56 21.5	-32 11 05	13.87	0.01105	Sy2
NGC 1241	03 11 14.8	-08 55 15	14.34	0.01635	Sy2
NGC 1320	03 24 48.8	$-03 \ 02 \ 26$	13.26	0.01346	Sy2
MCG -02.09.040	03 25 04.9	-12 18 24	13.67	0.00899	Sy2
MRK 612	03 30 40.8	$-03 \ 08 \ 11$	14.93	0.01468	Sy2
NGC 1358	03 33 39.6	-05 05 18	15.10	0.02066	Sy2
NGC 3660	11 23 32.1	-08 39 28	13.30	0.01339	Sy2
MRK 745	11 39 56.3	16 57 17	14.60	0.01070	Sy2
NGC 4303	12 21 54.8	04 28 24	10.28	0.00523	Sy2
NGC 4501	12 31 59.5	14 25 16	10.49	0.00760	Sy2
NGC 4602	12 40 37.5	$-05 \ 07 \ 29$	12.00	0.00847	Sy2
NGC 4939	13 04 14.0	$-10\ 20\ 25$	11.99	0.01040	Sy2
MCG-03.34.064	13 22 24.2	$-16\ 43\ 44$	14.64	0.01718	Sy2
UGC 8621	13 37 39.9	39 09 14	14.20	0.02009	Sy2
NGC 5283	13 41 05.7	67 40 18	14.30	0.01045	Sy2
MRK 461	13 47 17.9	34 08 58	14.50	0.01632	Sy2
NGC 5347	13 53 17.8	33 29 24	13.18	0.00796	Sy2
NGC 5427	14 03 25.6	$-06 \ 01 \ 53$	11.93	0.00870	Sy2
IRAS 14082+1347	14 10 41.6	13 33 23	15.20	0.01613	Sy2
NGC 5506	14 13 14.6	$-03 \ 12 \ 29$	13.37	0.00585	Sy2
NGC 5695	14 37 22.1	36 34 01	13.90	0.01409	Sy2
NGC 5929	15 26 06.1	41 40 11	13.00	0.00854	Sy2
NGC 5953	15 34 32.2	15 11 37	13.30	0.00655	Sy2
IC 4553	15 34 57.1	23 30 07	14.40	0.01812	Sy2
AKN 479	15 35 52.4	14 30 59	14.70	0.01971	Sy2
IC 5135	21 48 19.5	-34 57 10	13.33	0.01614	Sy2
IC 1417	22 00 21.7	$-13 \ 08 \ 52$	14.36	0.01817	Sy2

IIINAKAZ I								
ONOMA	RA (J2000)	DEC (J2000)	$m_{\rm B}$	Z	ΤΥΠΟΣ			
NGC 7172	22 02 02.1	-31 52 11	12.95	0.00859	Sy2			
IC 5169	22 10 09.9	$-36\ 05\ 22$	13.60	0.01010	Sy2			
NGC 7378	22 47 47.8	$-11 \ 49 \ 01$	13.64	0.00861	Sy2			
NGC 7479	23 04 56.6	12 19 21	11.93	0.00792	Sy2			
NGC 7672	23 27 31.3	12 23 05	14.80	0.01338	Sy2			
NGC 7682	23 29 03.8	03 31 59	14.30	0.01712	Sy2			
NGC 7743	23 44 21.3	09 55 56	12.90	0.00440	Sy2			

ΠΙΝΑΚΑΣ Ι

<u>ΠΙΝΑΚΑΣ ΙΙ</u>

$\mathbf{X} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{v} \mathbf{u} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$								
μεχοι ποοβαλλομενή αποστασή 100 h - kpc με τις εουθοομεταθέσεις τους.								
ONOMA	RA (J2000)	DEC (J2000)	O_{MAPS}	Z	ΤΥΠΟΣ			
NGC 863	02 14 34.7	$-00 \ 46 \ 00$	14.58	0.0270	Sy1			
γείτονας 1	02 14 29.3	-00 46 05	18.25	$0.027{\pm}0.001$				
MRK 1400	02 20 13.7	+08 12 20	17.07	0.0293	Sy1			
γείτονας 1	02 19 59.8	+08 10 45	17.25	$0.0284{\pm}0.0001$				
NGC 1019	02 38 27.2	+01 54 31	15.02	0.0242	Sy1			
γείτονας 1	02 38 16.1	+01 55 49	17.66	$0.0666 {\pm} 0.0003$				
γείτονας 2	02 38 25.4	+01 58 07	16.28	$0.0203{\pm}0.0006$				
γείτονας 3	02 38 26.6	+01 58 47	18.13	$0.0720{\pm}0.0007$				
γείτονας 4	02 38 13.6	+01 51 31	18.29	$0.0180{\pm}0.0004$				
NGC 1194	03 03 48.4	$-01 \ 06 \ 09$	15.38	0.0134	Sy1			
γείτονας 1	03 03 41.2	$-01 \ 04 \ 25$	16.99	$0.0140{\pm}0.0001$				
γείτονας 2	03 03 35.2	$-01 \ 05 \ 14$	19.11	$0.0664{\pm}0.0001$				
γείτονας 3	03 03 54.1	$-01 \ 11 \ 16$	17.43	$0.0387{\pm}0.0001$				
γείτονας 4	03 04 12.5	$-01 \ 11 \ 34$	15.75	$0.0130{\pm}0.0001$				
NGC 3080	09 59 55.9	+13 02 43	15.69	0.0355	Sy1			
κανένας								
MCG10.16.111	11 18 57.7	+58 03 24	17.47	0.0271	Sy1			
γείτονας 1	11 19 07.6	+58 03 15	16.95	$0.0327 {\pm} 0.0003$				
MRK 739A	11 36 29.4	+21 35 46	15.41	0.0297	Sy1			
κανένας					-			
1H 1142-178	11 45 40.4	$-18 \ 27 \ 16$	16.82	0.0329	Sy1			
γείτονας 1	11 45 40.9	$-18 \ 27 \ 36$	18.01	$0.0322{\pm}0.0004$				
γείτονας 2	11 45 38.8	-18 29 19	18.45	$0.0333 {\pm} 0.0001$				
NGC 5940	15 31 17.9	+07 27 24	14.97	0.0340	Sy1			
κανένας					-			
MRK 290	15 35 52.1	+57 54 06	16.72	0.0306	Sy1			
γείτονας 1	15 36 17.1	+57 55 27	16.98	$0.0655 {\pm} 0.0007$				
MRK 291	15 55 07.9	+19 11 28	17.00	0.0358	Sy1			
κανένας								
MRK 699	16 23 45.8	+41 04 52	17.21	0.0342	Sy1			
γείτονας 1	16 23 40.4	+41 06 16	17.59	$0.0334{\pm}0.0005$	•			
γείτονας 2	16 23 57.8	+41 05 30	18.06	$0.0933 {\pm} 0.0007$				

Το υποσύνολο των ενεργών γαλαξιών από τη φασματοσχοπιχή μας μελέτη. Κάτω από χάθε ενεργό γαλαξία παραθέτουμε όλους τους γειτονιχούς του μέχρι προβαλλόμενη απόσταση 100 h^{-1} kpc με τις ερυθρομεταθέσεις τους.

ONOMA	RA (J2000)	DEC (J2000)	$O_{\rm MAPS}$	Z	ΤΥΠΟΣ
NGC 6212	16 43 23.0	+39 48 20	16.02	0.0302	Sy1
κανένας					·
NGC 7469	23 03 15.5	+08 52 24	14.48	0.0162	Sy1
γείτονας 1	23 03 18.0	+08 53 37	15.58	$0.0156 {\pm} 0.0003$	·
NGC 526A	01 23 54.5	-35 03 54	15.69	0.0191	Sy1.5
γείτονας 1	01 23 57.1	$-35\ 04\ 09$	15.80	$0.0188{\pm}0.0004$	-
γείτονας 2	01 23 58.1	$-35\ 06\ 54$	15.68	$0.0189{\pm}0.0003$	
γείτονας 3	01 24 09.5	$-35\ 05\ 42$	16.37	$0.0185{\pm}0.0007$	
γείτονας 4	01 23 59.2	$-35 \ 07 \ 40$	16.04	$0.0185{\pm}0.0006$	
UGC 1032	01 27 32.3	+19 10 46	15.66	0.0167	Sy1.5
γείτονας 1	01 27 36.0	+19 13 55	17.72	$0.0429 {\pm} 0.0006$	
γείτονας 2	01 27 17.9	+19 11 58	17.85	$0.0423{\pm}0.0004$	
γείτονας 3	01 27 27.9	+19 14 21	17.23	$0.0455 {\pm} 0.0006$	
γείτονας 4	01 27 30.5	+19 06 24	18.60	$0.0404{\pm}0.0006$	
γείτονας 5	01 27 42.5	+19 14 27	18.64	$0.0429 {\pm} 0.0006$	
γείτονας 6	01 27 13.0	+19 10 57	19.52	$0.0716{\pm}0.0004$	
γείτονας 7	01 27 46.8	+19 08 52	19.14	$0.0377 {\pm} 0.0004$	
MRK 595	02 41 32.9	+07 10 50	16.86	0.0270	Sy1.5
γείτονας 1	02 41 34.2	+07 10 51	17.63	$0.0378 {\pm} 0.0008$	
NGC 3516	10 17 39.6	+21 41 19	13.74	0.0090	Sy1.5
γείτονας 1	11 05 56.4	+72 31 29	15.99	$0.0232{\pm}0.0002$	
IC 2637	11 13 49.6	+09 35 13	15.50	0.0292	Sy1.5
γείτονας 1	11 13 55.5	+09 38 34	17.22	$0.039{\pm}0.001$	
NGC 5548	14 17 59.5	+25 08 09	14.18	0.0172	Sy1.5
γείτονας 1	14 17 33.9	+25 06 52	17.16	$0.0172{\pm}0.0004$	
NGC 6104	16 16 30.6	+35 42 25	15.11	0.0279	Sy1.5
γείτονας 1	16 16 49.9	+35 42 07	16.44	$0.0264{\pm}0.0009$	
NGC 7603	23 18 56.6	$+00\ 18\ 10$	14.74	0.0290	Sy1.5
γείτονας 1	23 19 00.0	$+00\ 14\ 08$	17.35	$0.0545 {\pm} 0.0007$	
γείτονας 2	23 18 55.5	+00 16 19	18.55	$0.0770{\pm}0.0001$	
γείτονας 3	23 19 01.1	+00 16 52	18.51	$0.0711 {\pm} 0.0001$	
ESO 545-G013	02 24 40.5	$-19\ 08\ 27$	14.41	0.0338	Sy1.8
γείτονας 1	02 24 50.9	$-19\ 08\ 03$	16.19	$0.0340{\pm}0.0004$	
NGC 3786	11 39 42.8	+31 54 33	13.88	0.0091	Sy1.8
γείτονας 1	11 39 44.6	+31 55 52	13.53	$0.0085 {\pm} 0.0007$	
γείτονας 2	11 39 26.9	+31 51 16	15.80	$0.0278 {\pm} 0.0001$	
UGC 12138	22 40 17.0	+08 03 12	15.93	0.0250	Sy1.8
γείτονας 1	22 40 11.0	+07 59 59	18.77	0.0236 ± 0.0002	

ΠΙΝΑΚΑΣ ΙΙ

		ΠΙΝΑΚΑΣ ΙΙ			
ONOMA	RA (J2000)	DEC (J2000)	$O_{\rm MAPS}$	Z	ΤΥΠΟΣ
MS 0942.8+0950	09 45 29.4	+09 36 13	16.95	0.0134	Sy1.9
γείτονας 1	09 45 12.8	+09 35 48	18.91	$0.1811 {\pm} 0.0009$	
UGC 7064	12 04 43.6	+31 10 37	15.11	0.0250	Sy1.9
γείτονας 1	12 04 45.6	+31 11 28	16.68	$0.0244{\pm}0.0004$	
γείτονας 2	12 04 45.2	+31 09 34	16.33	$0.0261 {\pm} 0.0006$	
IRAS 00160-0719	00 18 35.9	$-07 \ 02 \ 57$	15.73	0.0187	Sy2
γείτονας 1	00 18 33.3	$-06\ 58\ 54$	17.80	$0.0173 {\pm} 0.0006$	
UM 319	01 23 21.1	$-01\ 58\ 34$	15.80	0.0161	Sy2
κανένας					
IRAS 01475-0740	01 50 02.7	$-07\ 25\ 48$	17.67	0.01767	Sy2
γείτονας 1	01 49 58.2	$-07\ 27\ 31$	19.52	$0.181{\pm}0.001$	
NGC 1125	02 51 40.4	$-16 \ 38 \ 58$	14.38	0.0111	Sy2
γείτονας 1	02 51 37.6	-16 39 34	15.00	$0.0310{\pm}0.0001$	
ESO 417-G06	02 56 21.5	$-32\ 11\ 05$	15.54	0.0163	Sy2
γείτονας 1	02 56 40.5	$-32 \ 11 \ 04$	17.43	$0.0163 {\pm} 0.0006$	
γείτονας 2	02 56 05.5	$-32\ 05\ 28$	19.10	$0.0882{\pm}0.0008$	
NGC 1241	03 11 14.8	$-08\ 55\ 15$	13.56	0.0135	Sy2
γείτονας 1	03 11 19.3	-085409	15.41	$0.0125 {\pm} 0.0007$	
NGC 1320	03 24 48.8	$-03 \ 02 \ 26$	14.59	0.0090	Sy2
γείτονας 1	03 24 48.6	$-03 \ 00 \ 56$	15.07	$0.0095 {\pm} 0.0006$	
γείτονας 2	03 24 54.7	-025509	15.25	$0.0204{\pm}0.0002$	
MRK 612	03 30 40.8	$-03 \ 08 \ 11$	15.78	0.0207	Sy2
γείτονας 1	03 30 42.3	-03 09 49	16.13	$0.0205 {\pm} 0.0007$	
NGC 1358	03 33 39.6	$-05 \ 05 \ 18$	13.98	0.0134	Sy2
γείτονας 1	03 33 54.4	$-05 \ 03 \ 42$	19.45	$0.0381{\pm}0.0008$	
γείτονας 2	03 33 23.5	-04 59 55	14.95	$0.0131 {\pm} 0.0001$	
NGC 3660	11 23 32.1	-08 39 28	13.92	0.0123	Sy2
γείτονας 1	11 23 47.9	-08 40 18	19.68	$0.082{\pm}0.001$	
γείτονας 2	11 23 16.4	-08 40 07	17.52	$0.0245 {\pm} 0.0007$	
γείτονας 3	11 23 48.2	$-08 \ 41 \ 22$	17.56	$0.083 {\pm} 0.001$	
IC 4553	15 34 57.1	+23 30 07	14.43	0.0181	Sy2
γείτονας 1	15 34 57.1	+23 30 16	15.68	$0.019{\pm}0.001$	
γείτονας 2	15 34 52.7	+23 28 48	18.55	$0.0910{\pm}0.0001$	
γείτονας 3	15 34 53.7	+23 28 16	17.69	$0.089 {\pm} 0.001$	
γείτονας 4	15 35 04.8	+23 28 45	16.61	$0.037 {\pm} 0.001$	
AKN 479	15 35 52.4	+14 30 59	15.55	0.0197	Sy2
κανένας					

المنارات المستشارات

ΠΙΝΑΚΑΣ Π							
ONOMA	RA (J2000)	DEC (J2000)	O_{MAPS}	Z	ΤΥΠΟΣ		
IC 1417	22 00 21.7	$-13 \ 08 \ 52$	15.00	0.0182	Sy2		
κανένας							
NGC 7378	22 47 47.8	$-11 \ 49 \ 01$	14.30	0.0086	Sy2		
γείτονας 1	22 47 55.9	-11 47 23	18.64	$0.1180{\pm}0.0008$			
NGC 7672	23 27 31.3	+12 23 05	15.23	0.0134	Sy2		
γείτονας 1	23 27 19.3	+12 28 03	14.67	$0.0138 {\pm} 0.0005$			
NGC 7682	23 29 03.8	+03 31 59	14.88	0.0171	Sy2		
γείτονας 1	23 28 46.6	+03 30 41	14.64	$0.0171 {\pm} 0.0001$			
NGC 7743	23 44 21.3	+09 55 56	12.16	0.0044	Sy2		
γείτονας 1	23 44 27.4	+09 53 08	19.23	$0.0040 {\pm} 0.0007$			
γείτονας 2	23 44 34.4	+09 53 33	19.72	$0.161 {\pm} 0.001$			
γείτονας 3	23 44 05.5	+10 03 26	16.95	$0.0054{\pm}0.0001$			

του ουρανού που καλύπτουν οι κατάλογοι SSRS και CfA2						
ONOMA	RA (J2000)	DEC (J2000)	m_B	Z	D*	ΤΥΠΟΣ
NGC0023	00 09 53.1	25 55 25	12.50	0.0152	_	starburst
ESO079-G003	00 14 54.7	-39 11 19	12.50	0.0090	—	ανενεργός
NGC0174	00 36 59.0	-29 28 40	13.62	0.0116	—	starburst
UGC00556	00 54 49.6	29 14 43	15.30	0.0154	—	LINER
UGC00903	01 21 47.1	17 35 34	14.70	0.0084	—	μη ταξ/νος
ESO353-G020	01 34 51.6	-36 08 08	13.95	0.0161	—	ανενεργός
NGC0716	01 52 59.3	12 42 31	14.00	0.0152	—	ανενεργός
UGC01451	01 58 29.9	25 21 34	14.30	0.0164	—	ανενεργός
NGC0835	02 09 24.5	-10 08 06	13.14	0.0138	11.00	starburst
NGC0838	02 09 38.3	-10 08 45	14.22	0.0128	27.82	starburst
NGC0839	02 09 42.8	-10 10 59	14.20	0.0128	27.91	starburst
NGC0873	02 16 32.2	$-11 \ 20 \ 52$	12.83	0.0134	—	starburst
NGC0877	02 17 58.5	14 32 53	12.50	0.0131	—	starburst
NGC0922	02 25 04.4	-24 47 15	12.63	0.0103	—	starburst
NGC0992	02 37 25.2	21 06 06	13.50	0.0138	29.32	starburst
NGC1083	02 45 40.5	$-15 \ 21 \ 24$	15.19	0.0137	—	starburst
NGC1134	02 53 40.9	13 00 58	13.20	0.0121	77.18	ανενεργός
UGC02403	02 55 57.2	00 41 36	13.20	0.0139	—	starburst
NGC1204	03 04 39.9	$-12 \ 20 \ 25$	14.21	0.0143	—	starburst
ESO420-G013	04 13 49.5	-32 00 23	13.52	0.0121	—	Sy2
NGC1614	04 31 35.5	-08 40 56	12.00	0.0160	2.00	starburst
NGC2782	09 14 05.5	40 06 54	12.66	0.0085	—	starburst
NGC1667	04 46 10.5	-06 24 24	13.00	0.0150	—	Sy2
NGC2785	09 15 15.8	40 55 08	14.90	0.0088	52.00	starburst
NGC2856	09 24 16.9	49 14 58	13.90	0.0088	26.53	starburst
NGC3147	10 16 55.8	73 24 07	11.52	0.0094	—	Sy2
NGC3221	10 22 21.0	21 34 12	14.30	0.0137	—	ανενεργός
NGC3367	10 46 34.5	13 45 10	12.22	0.0101	—	μη ταξ/νος
NGC3508	11 02 59.6	$-16 \ 17 \ 17$	13.20	0.0130	—	starburst
NGC3690	11 28 32.9	58 33 19	13.20	0.0104	2.16	starburst
NGC3735	11 36 01.0	70 32 06	12.60	0.0090	—	Sy2
NGC3994	11 57 37.0	32 16 39	13.68	0.0105	18.17	LINER
NGC3995	11 57 44.9	32 17 42	12.96	0.0109	18.65	starburst
NGC4175	12 12 30.7	29 10 10	14.20	0.0131	17.39	Sy2
NGC4194	12 14 10.1	54 31 34	13.00	0.0084	—	starburst
NGC4332	12 22 47.8	65 50 36	13.20	0.0091	_	starburst
NGC4388	12 25 46.7	12 39 40	12.20	0.0084	_	Sy2
NGC4433	12 27 38.6	-08 16 49	12.90	0.0099	63.09	ανενεργός
MCG-02-33-098	13 02 19.8	$-15 \ 46 \ 07$	15.38	0.0159	_	starburst

<u>ΠΙΝΑΚΑΣ ΙΙΙ</u>

Κατάλογος BIRG γαλαξιών που βρίσκονται στις περιοχές του ουοανού που καλύπτουν οι κατάλογοι SSRS και CfA2

* Η απόσταση κάθε κεντρικού γαλαξία από το γειτονά του.

ONOMA	RA (J2000)	DEC (J2000)	m_B	Z	D	ΤΥΠΟΣ
MCG-03-34-014	13 12 34.5	$-17 \ 32 \ 28$	13.02	0.0092	_	ανενεργός
NGC5020	13 12 40.1	12 35 57	13.40	0.0112	—	ανενεργός
IC0860	13 15 03.7	24 37 05	14.80	0.0129	—	μη ταξ/νος
NGC5073	13 19 21.4	-14 51 46	13.50	0.0091	—	starburst
IC4280	13 32 53.0	-24 12 29	13.51	0.0163	93.52	starburst
NGC5371	13 55 40.3	40 27 38	11.59	0.0085	—	μη ταξ/νος
NGC5394	13 58 33.7	37 27 10	13.85	0.0116	19.44	starburst
NGC5395	13 58 37.9	37 25 27	12.47	0.0116	19.10	LINER
NGC5430	14 00 45.7	59 19 46	13.08	0.0099	_	starburst
NGC5433	14 02 36.1	32 30 35	14.00	0.0145	—	starburst
NGC5427	14 03 25.7	$-06 \ 01 \ 53$	11.93	0.0087	22.81	Sy2
NGC5595	14 24 13.2	$-16\ 43\ 28$	13.12	0.0090	32.63	ανενεργός
NGC5597	14 24 27.2	$-16 \ 45 \ 50$	13.32	0.0089	32.68	starburst
NGC5653	14 30 10.3	31 12 50	13.39	0.0119	_	starburst
NGC5728	14 42 23.6	-17 15 14	12.81	0.0095	_	Sy2
NGC5757	14 47 46.2	$-19\ 04\ 45$	13.50	0.0089	_	starburst
NGC5793	14 59 24.6	$-16 \ 41 \ 38$	14.17	0.0117	37.36	Sy2
UGC09668	14 55 56.0	83 31 29	13.80	0.0131	63.55	starburst
CGCG049-057	15 13 13.2	07 13 26	15.50	0.0130	_	starburst
NGC5900	15 15 05.0	42 12 28	15.00	0.0084	70.48	ανενεργός
NGC5930	15 26 07.8	41 40 30	13.00	0.0087	3.59	starburst
NGC5936	15 30 01.1	12 59 21	13.41	0.0134	_	starburst
NGC5937	15 30 46.0	$-02 \ 49 \ 49$	13.35	0.0095	_	starburst
NGC5990	15 46 16.0	02 24 49	13.10	0.0128	84.90	Sy2
NGC6052	16 05 13.1	20 32 27	14.70	0.0151	_	starburst
ESO402-G026	21 22 31.7	$-36 \ 40 \ 57$	13.69	0.0093	_	ανενεργός
NGC7130	21 48 19.5	-34 57 10	13.33	0.0161	_	μη ταξ/νος
NGC7172	22 02 02.2	$-31\ 52\ 15$	12.95	0.0086	46.75	Sy2
IC5179	22 16 09.3	$-36\ 50\ 43$	12.46	0.0114	_	starburst
ESO534-G009	22 38 41.7	-255102	13.55	0.0113	86.40	LINER
NGC7469	23 03 15.5	08 52 24	13.00	0.0162	18.76	μη ταξ/νος
NGC7541	23 14 43.0	04 32 03	12.70	0.0089	23.62	starburst
NGC7591	23 18 16.0	06 35 08	13.80	0.0165	_	Sy2
NGC7678	23 28 27.7	22 25 15	12.70	0.0116	_	Sy2
NGC7714	23 36 14.0	02 09 17	13.10	0.0093	16.12	starburst
NGC7769	23 51 04.7	20 09 03	13.10	0.0141	2.64	μη ταξ/νος
NGC7771	23 51 24.7	20 06 41	13.39	0.0143	13.23	μη ταξ/νος
UGC12914	24 01 38.0	23 29 04	13.20	0.0146	14.82	μη ταξ/νος
UGC12195	24 01 42.2	23 29 41	13.90	0.0145	14.33	μη ταξ/νος

ΠΙΝΑΚΑΣ ΙΙΙ

ΠΙΝΑΚΑΣ ΙΥ

Το υποσύνολο των BIRG γαλαξιών από τη φασματοσκοπική μας μελέτη. Κάτω από κάθε ενεργό γαλαξία παραθέτουμε όλους τους γειτονικούς του μέχρι προβαλλόμενη απόσταση 100 h⁻¹ kpc με τις ερυθρομεταθέσεις τους.

· · ·	• •	I I			5 5
ONOMA	RA (J2000)	DEC (J2000)	$O_{\rm MAPS}$	ΕΡΥΘ/ΠΙΣΗ	ΤΥΠΟΣ
NGC0023	00 09 53.1	25 55 25	13.95	0.0152	starburst
κανένας					
UGC00556	00 54 49.6	29 14 43	15.63	0.0154	LINER
neighbor 1	00 54 51.1	29 16 25	17.03	$0.0152{\pm}0.0002$	
NGC0716	01 52 59.3	12 42 31	14.51	0.0152	ανενεργός
κανένας					
UGC01451	01 58 29.9	25 21 34	15.41	0.0164	ανενεργός
κανένας					
NGC0835	02 09 24.5	$-10\ 08\ 06$	$13.67 \star$	0.0138	starburst
neighbor 1	02 09 20.9	-10 08 00	*	$0.0130{\pm}0.0002$	
neighbor 2	02 09 38.3	$-10\ 08\ 45$	14.89	$0.0133{\pm}0.0004$	
neighbor 3	02 09 42.8	$-10\ 10\ 59$	15.01	$0.0132{\pm}0.0004$	
NGC0877	02 17 58.5	14 32 53	13.07	0.0131	starburst
neighbor 1	02 17 53.3	14 31 17	16.04	0.0136 ± 0.0007	
neighbor 2	02 17 26.3	14 34 49	16.77	0.013376††	
NGC0922	02 25 04.4	$-24\ 47\ 15$	13.25	0.0103	starburst
neighbor 1	02 24 30.0	-24 44 44	16.73	0.1054††	
NGC0992	02 37 25.2	21 06 06	15.39	0.0138	starburst
neighbor 1	02 37 28.2	21 08 31	16.99	0.0126 ± 0.0004	
NGC1614	04 31 35.5	-08 40 56	14.55	0.0160	Sy2
neighbor 1	04 31 35.5	-08 40 56	16.44	0.0160	
NGC1667	04 46 10.5	$-06\ 24\ 24$	13.00†	0.0160	Sy2
κανένας					
UGC02403	02 55 57.2	00 41 36	15.33	0.0139	starburst
neighbor 1	02 55 58.9	00 40 26	19.10	0.0749 ± 0.0002	
NGC2785	09 15 15.8	40 55 08	14.85	0.0088	starburst
neighbor 1	09 15 33.8	40 55 27	14.54	$0.0653 {\pm} 0.0004$	
neighbor 2	09 14 43.1	40 52 47	14.54	0.008319††	
neighbor 3	09 14 35.6	40 55 24	17.58	0.008933††	
NGC2856	09 24 16.9	49 14 58	14.71	0.0088	starburst
neighbor 1	09 24 03.1	49 12 16	14.52	$0.0089 {\pm} 0.0004$	
NGC3221	10 22 21.0	21 34 12	13.87	0.0137	ανενεργός
neighbor 1	10 22 26.0	21 32 31	17.06	$0.0117{\pm}0.0004$	-
neighbor 2	10 22 21.1	21 31 00	17.89	$0.0539{\pm}0.0003$	
neighbor 3	10 22 13.4	21 30 42	18.67	$0.0128{\pm}0.0007$	

ONOMA	RA (J2000)	DEC (J2000)	O_{MAPS}	ΕΡΥΘ/ΘΕΣΗ	ΤΥΠΟΣ
NGC3690	11 28 32.9	58 33 19	13.76*	0.0104	starburst
neighbor 1	11 28 33.5	58 33 47	*	0.010411††	
neighbor 2	11 28 27.3	58 34 42	*	$0.0132{\pm}0.0001$	
neighbor 3	11 28 45.8	58 35 36	16.14	$0.0604{\pm}0.0002$	
NGC4388	12 25 46.7	12 39 40	12.79	0.0084	Sy2
neighbor 1	12 25 41.7	12 48 38	14.50	$0.0021{\pm}0.0001$	
neighbor 2	12 25 15.2	12 42 53	15.87	$< 0.001 \dagger \dagger$	
IC0860	13 15 03.7	24 37 05	15.31	0.0129	μη ταξ/νος
κανένας					
NGC5073	13 19 21.4	$-14\ 51\ 46$	14.03	0.0091	starburst
neighbor 1	13 19 34.1	$-14 \ 46 \ 22$	16.21	$0.0350{\pm}0.0006$	
neighbor 2	13 18 56.4	-145413	16.41	$0.0347{\pm}0.0001$	
NGC5433	14 02 36.1	32 30 35	14.68	0.0145	starburst
neighbor 1	14 02 39.0	32 27 50	18.00	$0.0142{\pm}0.0008$	
neighbor 2	14 02 20.5	32 26 53	16.17	$0.00141 {\pm} 0.0007$	
NGC5653	14 30 10.3	31 12 50	14.10	0.0119	starburst
κανένας					
NGC5990	15 46 16.0	02 24 49	14.29	0.0128	starburst
neighbor 1	15 46 28.9	02 23 09	18.16	$0.0468 {\pm} 0.0002$	
neighbor 2	15 46 23.2	02 21 34	17.58	$0.0480{\pm}0.0003$	
neighbor 3	15 45 45.9	02 24 35	15.87	$0.0141{\pm}0.0001$	
NGC7541	23 14 43.0	04 32 03	13.22	0.0089	starburst
neighbor 1	23 14 34.5	04 29 54	14.70	$0.0080{\pm}0.0006$	
NGC7714	23 36 14.0	02 09 17	13.10†	0.0093	starburst
neighbor 1	23 36 22.1	02 09 24	14.90†	$0.0089{\pm}0.0001$	
NGC7771	23 51 24.7	20 06 41	13.81*	0.0143	μη ταξ/νος
neighbor 1	23 51 22.5	20 05 47	*	$0.0145{\pm}0.0008$	
neighbor 2	23 51 13.1	20 06 12	17.13	0.013679††	
neighbor 3	23 51 04.0	20 09 02	14.05	$0.0139 {\pm} 0.0003$	
neighbor 4	23 51 13.9	20 13 46	17.02	0.043527††	

ΠΙΝΑΚΑΣ ΙV

† Μεγέθη Zwicky (Η περιοχή δεν καλύπτεται από τον κατάλογο MAPS Catalog).

†† Ερυθρομεταθέσεις από το NED.

* Μη διακρίσιμοι γειτονικοί γαλαξίες.

Δόγοι γραμμών εκπομπής και κατάταξη.								
ONOMA	$[OIII]/H_{\beta}$	$[NII]/H_{\alpha}$	$[SII]/H_{\alpha}$	Ho	Stasinska	BPT		
Sy1 galaxies								
NGC 863								
neighbour 1	-	-	-	N/A	no	no		
MRK 1400								
neighbour 1	$0.57 {\pm} 0.05$	0.32 ± 0.01	0.36 ± 0.02	SB	SB	SB		
NGC 1019								
neighbour 2	0.58 ± 0.13	0.50 ± 0.01	0.45 ± 0.02	TO	TO	ТО		
NGC 1194								
neighbour 1	0.37 ± 0.03	$0.33 \pm < 0.005$	0.36 ± 0.01	SB	SB	SB		
neighbour 4	$0.40 {\pm} 0.06$	0.39 ± 0.01	0.39 ± 0.02	SB	SB	SB		
1H 1142–178								
neighbour 1	-	-	-	no	no	no		
neighbour 2	-	$0.44 {\pm} 0.07$	0.79 ± 0.10	TO:	TO	-		
MRK 699								
neighbour 1	0.40 ± 0.13	$0.70 {\pm} 0.06$	0.56 ± 0.05	AGN	TO	ТО		
NGC 7469								
neighbour 1	0.43 ± 0.05	0.39 ± 0.01	0.29 ± 0.01	SB	SB	SB		
NGC 526A*								
neighbour 1	-	1.37 ± 0.22	0.79 ± 0.19	AGN	AGN	-		
neighbour 2	-	-	-	no	no	no		
neighbour 3	0.32 ± 0.10	0.35 ± 0.02	0.42 ± 0.04	SB:	SB	-		
neighbour 4	$0.57 {\pm} 0.08$	0.35 ± 0.01	$0.40 {\pm} 0.07$	SB	SB	SB		
NGC 5548								
neighbour 1	0.60 ± 0.12	0.42 ± 0.01	0.57 ± 0.01	TO	TO	SB		
NGC 6104								
neighbour 1	-	-	-	no	no	no		

<u>ΠΙΝΑΚΑΣ V</u>						
งกะ งกตามแต่ง	εκποιιπής	xai	χατάτα			

		IIIINAKAZ	· V			
ONOMA	$[OIII]/H_{\beta}$	$[NII]/H_{\alpha}$	$[SII]/H_{\alpha}$	Ho	Stasinska	BPT
Sy2 galaxies						
ESO 545-G013						
neighbour 1	-	0.40 ± 0.03	$0.39 {\pm} 0.05$	SB	SB	-
NGC 3786						
neighbour 1	0.72 ± 0.02	$0.35 {\pm} 0.01$	$0.30 {\pm} 0.01$	SB	SB	SB
UGC 12138						
neighbour 1	4.16 ± 0.39	$0.06 {\pm} 0.01$	$0.18 {\pm} 0.01$	SB	SB	SB
UGC 7064						
neighbour 1	$0.50 {\pm} 0.13$	0.42 ± 0.03	0.17 ± 0.03	SB	ТО	SB
neighbour 1(2)	-	4.2 ± 0.5	2.4 ± 0.3	AGN	AGN	-
neighbour 2	$0.41 {\pm} 0.06$	$0.46 {\pm} 0.01$	$0.44 {\pm} 0.01$	ТО	ТО	SB
IRAS 00160-0719						
neighbour 1	$0.97 {\pm} 0.07$	$0.25 {\pm} 0.01$	0.44 ± 0.03	SB:	SB	SB
ESO 417-G06						
neighbour 1	1.16 ± 0.14	0.21 ± 0.01	$0.29 {\pm} 0.02$	SB	SB	SB
NGC 1241						
neighbour 1	$1.35 {\pm} 0.25$	$0.37 {\pm} 0.01$	$0.37 {\pm} 0.02$	SB	SB	TO
NGC 1320						
neighbour 1	-	-	-	no	no	no
MRK 612						
neighbour 1	-	-	-	no	no	no
NGC 1358						
neighbour 2	-	-	-	no	no	no
IC 4553						
neighbour 1	-	$1.89 {\pm} 0.08$	$0.86 {\pm} 0.15$	AGN	AGN	-
NGC 7672						
neighbour 1	-	-	-	no	no	no
NGC 7682						
neighbour 1	$1.56 {\pm} 0.11$	$0.45 {\pm} 0.01$	$0.29 {\pm} 0.01$	SB	ТО	TO
NGC 7743						
neighbour 1	-	-	-	no	no	no
neighbour 3	$2.50{\pm}0.17$	$0.07 {\pm} 0.01$	$0.25{\pm}0.01$	SB	SB	SB

ΠΙΝΑΚΑΣ V

ONOMA	$[OIII]/H_{\beta}$	$[NII]/H_{\alpha}$	$[SII]/H_{\alpha}$	Но	Stasinska	BPT
BIRGs						
TIGODOLL						
UGC00556		0.05.001	0.00 1.0.01	a b		
neighbour 1	0.78 ± 0.04	0.25 ± 0.01	0.33 ± 0.01	SB	SB	SB
NGC0835						
neighbour 1	-	1.85 ± 0.07	1.56 ± 0.12	AGN	AGN	-
neighbour 2	0.36 ± 0.01	$0.38 {\pm} 0.01$	0.24 ± 0.01	SB	SB	SB
neighbour 3	1.73 ± 0.31	0.62 ± 0.01	0.41 ± 0.01	AGN	TO	ТО
NGC0877						
neighbour 1	-	$0.68 {\pm} 0.06$	$0.54 {\pm} 0.09$	AGN	ТО	-
NGC0922						
neighbour 1	$7.86 {\pm} 0.82$	$0.08{\pm}0.01$	$0.13 {\pm} 0.01$	SB	SB	SB
NGC0992						
neighbour 1	$3.64 {\pm} 0.09$	$0.12 {\pm} 0.01$	$0.17 {\pm} 0.01$	SB	SB	SB
NGC1614						
neighbour 1			merger			
NGC2785						
neighbour 1	$0.85 {\pm} 0.12$	$0.25 {\pm} 0.01$	$0.37 {\pm} 0.02$	SB	SB	SB
neighbour 2	$1.81 {\pm} 0.17$	$0.10 {\pm} 0.01$	$0.25 {\pm} 0.02$	SB	SB	SB
NGC2856						
neighbour 1	-	$0.60 {\pm} 0.02$	$0.45 {\pm} 0.02$	AGN	ТО	-
NGC3221						
neighbour 1	-	-	-	no	no	no
neighbour 2	-	-	-	no	no	no
NGC3690						
neighbour 1	$1.48 {\pm} 0.19$	$0.41 {\pm} 0.01$	$0.28 {\pm} 0.02$	SB	ТО	ТО
neighbour 2	-	-	-	no	no	no

ΠΙΝΑΚΑΣ V

IIINAKAZ V						
ONOMA	$[OIII]/H_{\beta}$	$[NII]/H_{\alpha}$	$[SII]/H_{\alpha}$	Ho	Stasinska	BPT
NGC5433						
neighbour 1	$1.87 {\pm} 0.14$	$0.16{\pm}0.01$	$0.33{\pm}0.01$	SB	SB	SB
neighbour 2	-	$0.97 {\pm} 0.05$	$0.50 {\pm} 0.04$	AGN	AGN	-
NGC5990						
neighbour 3	$0.41 {\pm} 0.02$	$0.36 {\pm} 0.01$	$0.25{\pm}0.01$	SB	SB	SB
NGC7541						
neighbour 1	-	$0.62 {\pm} 0.02$	$0.40{\pm}0.02$	AGN	TO	
NGC7714*						
neighbour* 1	-	-	-	no	no	no
NGC7771						
neighbour 1	$0.74 {\pm} 0.03$	$0.40{\pm}0.01$	$0.34 {\pm} 0.01$	SB	SB	SB
neighbour 2	-	$0.11 {\pm} 0.03$	$0.35 {\pm} 0.03$	SB	SFN	-
neighbour 3	$0.42 {\pm} 0.08$	$0.61{\pm}0.01$	$0.29{\pm}0.01$	ТО	ТО	ТО

ΠΙΝΔΚΔΣ Υ

* Μη διακρίσιμοι γειτονικοί γαλαξίες

Abell	z	δ_x	σ_x	$L_{x,lim}$ (erg/s)	δ_o	σ_o	N_{Abell}
2065	0.073	1.01	0.82	1.0E42	8.94	2.42	109
1589	0.073	1.68	0.94	1.0E42	3.25	1.64	38
2670	0.076	0.37	0.68	1.0E42	4.31	1.72	142
1663	0.084	1.89	0.91	1.0E42	3.54	1.61	56
1750	0.085	0.38	0.61	1.0E42	3.98	1.65	40
1674	0.107	1.81	0.84	1.0E42	1.37	1.13	165
2050	0.118	1.16	0.72	1.0E42	1.31	1.04	50
1068	0.138	0.92	0.64	1.0E42	2.08	1.18	71
1689	0.183	0.04	0.52	1.0E42	6.31	1.69	228
963	0.206	0.22	0.61	1.5E42	4.20	1.38	134
773	0.217	0.60	0.80	1.8E42	4.04	1.34	108
1763	0.223	0.06	0.75	2.5E42	2.55	1.13	152
267	0.230	0.69	0.85	2.1E42	2.85	1.13	37
1835	0.253	0.13	0.80	3.5E42	3.20	1.14	48
2631	0.273	1.51	1.12	3.3E42	3.23	1.09	136
1758	0.279	1.24	1.11	2.2E42	3.90	1.21	198

<u>ΠΙΝΑΚΑΣ VI</u> Δείγμα σμηνών γαλαξιών ABELL

z: ερυθρομετάθεση του σμήνους.

δ_x: υπερπυκνότητα πηγών ακτινών-Χ.

 σ_x : σφάλμα στο δ_x .

 $L_{x,lim}$: όριο ροής του πεδίου.

 δ_o : υπε
ρπυκνότητα οπτικών γαλαξιών.

 $\sigma_o:$ σφάλμα στο $\delta_o.$

N_{Abell}: πλουσιότητα Abell.

170

www.manaraa.com

Βιβλιογραφία

- [1] Antonucci, R. & Miller, J., 1985, ApJ, 297, 621
- [2] Antonucci, R., 1993, ARA&A, 31, 473
- [3] Arnaud, M., et al. 2008, Experimental Astronomy, 24
- [4] Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
- [5] John D. Barrow. Η απαρχή του σύμπαντος, κάτοπτρο 1995
- [6] Basilakos, S., Plionis, M., Georgakakis, A., & Georgantopoulos, I. 2005, MNRAS, 356, 183
- [7] Basilakos, S., & Plionis, M. 2006, MNRAS, 373, 1112
- [8] Bechtold, J., Forman, W., Jones, C., Schwarz, J., van Speybroeck, L., Giacconi, R., & Tucker, W. 1983, ApJ, 265, 26
- [9] Bianchi, S., Corral, A., Panessa, F., Barcons, X., Matt, G., Bassani, L., Carrera, F. J., & Jimenez-Bailon, E. 2008, MNRAS, 385, 195
- [10] Boisson, C., Joly, M., Pelat, D., & Ward, M. J. 2004, A&A, 428, 373
- [11] Boisson, C., Joly, M., Moultaka, J., Pelat, D., & Serote Roos, M. 2000, A&A 357, 850
- [12] Bothun, G. & Cornell, M., 1990, AJ, 99, 1004
- [13] Branchesi, M., Gioia, I. M., Fanti, C., Fanti, R., & Cappelluti, N. 2007, A&A, 462, 449
- [14] Brightman, M., & Nandra, K. 2008, MNRAS, 1110
- [15] Bundy, K., et al. 2007, Bulletin of the American Astronomical Society, 38, 940
- [16] Cabanela, J. E., Humphreys, R. M., Aldering, G., Larsen, J. A., Odewahn, S. C., Thurmes, P. M., Cornuelle, C. S. 2003 PASP, 115, 809
- [17] Cappi, M., et al. 2001, ApJ, 548, 624

- [18] Chatzichristou, E., 2002, ApJ, 581, 161
- [19] Cid Fernandes, R. J., Storchi-Bergmann, T., & Schmitt, H. R. 1998, MNRAS, 297, 579
- [20] Cid Fernandes, R., Heckman, T., Schmitt, H., Delgado, R. M. G., & Storchi-Bergmann, T. 2001, ApJ, 558, 81
- [21] Cid Fernandes, R., Gu, Q., Melnick, J., Terlevich, E., Terlevich, R., Kunth, D., Rodrigues Lacerda, R., & Joguet, B. 2004, MNRAS, 355, 273
- [22] Cid Fernandes, R., Gonzalez Delgado, R. M., Storchi-Bergmann, T., Martins, L. P., & Schmitt, H. 2005, MNRAS, 356, 270
- [23] Corbett, E. A., et al. 2003, ApJ, 583, 670
- [24] Couch, W. J., & Sharples, R. M. 1987, MNRAS, 229, 423
- [25] Coziol, R., Torres, C. A. O., Quast, G. R., Contini, T., & Davoust, E. 1998, ApJS, 119, 239
- [26] Cypriano, E. S., Sodre, L. J., Campusano, L. E., Dale, D. A., & Hardy, E. 2006, AJ, 131, 2417
- [27] D'Elia, V., Fiore, F., & Cocchia, F. 2004, arXiv:astro-ph/0407477
- [28] da Costa, L.N., et al., 1994, ApJL, 424, L1
- [29] da Costa, L.N., et al., 1998, AJ, 116, 1
- [30] Davies, R. I., Sanchez, F. M., Genzel, R., Tacconi, L. J., Hicks, E. K. S., Friedrich, S., & Sternberg, A. 2007, ApJ, 671, 1388
- [31] [Davis et al.(2003)]2003ApJ...597..202D Davis, D. S., Miller, N. A., & Mushotzky, R. F. 2003, ApJ, 597, 202
- [32] de Grijp, M. H. K., Lub, J., & Miley, G. K. 1987, A&AS, 70, 95
- [33] de Robertis, M.M., Hayhoe, K., Yee, H.K.C., 1998a, ApJS, 115, 163
- [34] de Robertis, M.M., Yee, H.K.C., Hayhoe, K., 1998b, ApJ, 496, 93
- [35] Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604
- [36] Dressler, A., Thompson, I. B., & Shectman, S. A. 1985, ApJ, 288, 481
- [37] Dultzin-Hacyan, D., Krongold, Y., Fuentes-Guridi, I., Marziani, P., 1999, ApJ, 513, L111

¹⁷²

- [38] Eastman, J., Martini, P., Sivakoff, G., Kelson, D. D., Mulchaey, J. S., & Tran, K.-V. 2007, ApJL, 664, L9
- [39] Fabricant, D. G., McClintock, J. E., & Bautz, M. W. 1991, ApJ, 381, 33
- [40] Anthony Fairall. Large Scale Structures in The Universe, Wiley-Praxis 1998
- [41] Fischer, P., Pryor, C., Murray, S., Mateo, M., & Richtler, T. 1998, AJ, 115, 592
- [42] Freedman, W. L. 1998, PhR, 307, 45
- [43] Giovanardi, C., Helou, G., Salpeter, E. E., & Krumm, N. 1983, ApJ, 267, 35
- [44] Giovanelli, R., & Haynes, M. P. 1985, ApJ, 292, 404
- [45] Gisler, G. R. 1978, MNRAS, 183, 633
- [46] Gonzalez Delgado, R. M., Heckman, T., & Leitherer, C. 2001, ApJ, 546, 845
- [47] Gu, Q., Dultzin-Hacyan, D., & de Diego, J. A. 2001, Revista Mexicana de Astronomia y Astrofisica, 37, 3
- [48] Henry, J. P., & Briel, U. G. 1991, A&A, 246, L14
- [49] Hernandez Toledo, H. M., Dultzin-Hacyan, D., & Sulentic, J. W. 2001, AJ, 121, 1319
- [50] Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315
- [51] Ho, L. C., 2005, astro-ph/0511157
- [52] Ho, L. C., Filippenko, A. V., & Sargent, W. L. 1995, ApJS, 98, 477
- [53] Huchra, J., 1976, AJ, 81, 952
- [54] Huchra, J., 1990, Center for Astrophysics Redshift Catalogue.
- [55] Huchra, J., Geller, M.J., Corwin, H., 1995, ApJS, 99, 391
- [56] Huchra, J., Vogeley, M.S., Geller, M.J., 1999, ApJS, 121, 287
- [57] Humphreys, R.M., Landau, R., Ghigo, F.D., et al. 1991, AJ, 102,395
- [58] Hunt, L. K., Malkan, M. A., Salvati, M., Mandolesi, N., Palazzi, E., & Wade, R. 1997, ApJs, 108, 229
- [59] Hunt L. K. & Malkan M. A. 1999, ApJ, 516, 660
- [60] Kauffmann, G., et al. 2003, MNRAS, 346, 1055

Βιβλιογραφία

- [61] Kaviraj, S., et al. 2008, MNRAS, 388, 67
- [62] Kelm, B., Focardi, P., Zitelli, V. 2004, aj, 71, 276
- [63] Kewley, L. J., Heisler, C. A., Dopita, M. A., & Lumsden, S. 2001, ApJs, 132, 37
- [64] Kewley, L.J., Geller, M.J., Barton, E.J., 2006a, AJ, 131,2004
- [65] Kewley, L.J., Groves, B. Kauffmann, G., Heckman, T., 2006b, MNRAS, 372, 961
- [66] Khalatyan, A., Cattaneo, A., Schramm, M., Gottlober, S., Steinmetz, M., & Wisotzki, L. 2008, MNRAS, 387, 13
- [67] Kim, M., Ho, L. C., Im, M., 2006, ApJ, 642, 702
- [68] Kim, D.-W. et al., 2004, ApJ, 600, 59
- [69] King, A. 2003, ApJL, 596, L27
- [70] Knapen, J. H., Shlosman, I., & Peletier, R. F. 2000, ApJ, 529, 93
- [71] Koulouridis, E., Chavushyan, V., Plionis, M., Krongold, Y., & Dultzin-Hacyan, D. 2006, ApJ, 651, 93
- [72] Koulouridis, E., Plionis, M., Chavushyan, V., Dultzin-Hacyan, D., Krongold, Y., & Goudis, C. 2006, ApJ, 639, 37
- [73] Krongold, Y., Dultzin-Hacyan, D., Marziani, P., 2000, apj, 224, 39
- [74] Krongold, Y., Dultzin-Hacyan, D., & Marziani, P. 2001, aj, 121, 702
- [75] Krongold, Y., Dultzin-Hacyan, D., & Marziani, P. 2002, ApJ, 572, 169
- [76] Krongold, Y., Dultzin-Hacyan, D., Marziani, P., & de Diego, J. A. 2003, Revista Mexicana de Astronomia y Astrofisica, 39, 225
- [77] Laurikainen, E. & Salo, H., 1995, AA, 293, 683
- [78] Lazzati, D., Campana, S., Rosati, P., Chincarini, G., & Giacconi, R. 1998, A&A, 331, 41
- [79] Li, C., Kauffmann, G., Heckman, T. M., White, S. D. M., & Jing, Y. P. 2008, MNRAS, 385, 1915
- [80] Lipovetsky, V.A., Neizvestny, S.I. & Neizvestnaya, O.M., 1988, Soob.Spets. Astrofiz. Obs., 55, 5
- [81] Lynden-Bell, D. 1969, Nature, 223, 690
- [82] Maiolino, R., & Rieke, G. H. 1995, ApJ, 454, 95
- 174

- [83] Maiolino, R., Ruiz, M., Rieke, G. H., & Papadopoulos, P. 1997, ApJ, 485, 552
- [84] Maiolino, R. 2008, New Astronomy Review, 52, 339
- [85] Malkan, M.A., Gorjian, V. & Tam, R., 1998, ApJS, 117, 25
- [86] Manners, J. C., et al. 2003, MNRAS, 343, 293
- [87] Marquez, I., & Moles, M. 1994, AJ, 108, 90
- [88] Marquez, I., et al. 1999, A&AS, 140, 1
- [89] Marquez, I., et al. 2000, A&A, 360, 431
- [90] Marquez, I., Durret, F., Masegosa, J., Moles, M., Varela, J., Gonzalez-Delgado, R.M., Maza, J., Perez, E., Roth, M., 2003, Nucl.Phys., 274, 1
- [91] Martinez, M. A., Del Olmo, A., Coziol, R., & Perea, J. 2008, Revista Mexicana de Astronomia y Astrofisica Conference Series, 32, 164
- [92] Martini, P., Kelson, D. D., Mulchaey, J. S., & Trager, S. C. 2002, ApJL, 576, L109
- [93] Martini, P., Kelson, D. D., Kim, E., Mulchaey, J. S., & Athey, A. A. 2006, ApJ, 644, 116
- [94] Martini, P., Mulchaey, J. S., & Kelson, D. D. 2007, ApJ, 664, 761
- [95] Marzke, R.O., Huchra, J.P., Geller, M.J., 1994, ApJ, 428, 43
- [96] Marzke, R.O., Geller, M.J., da Costa, L.N., Huchra, J.P., 1995, AJ, 110, 477
- [97] Mirabel, I. F., & Sanders, D. B. 1988, ApJ, 335, 104
- [98] Moles, M., Marquez, I., & Perez, E. 1995, ApJ, 438, 604
- [99] Molnar, S. M., Hughes, J. P., Donahue, M., & Joy, M. 2002, ApJL, 573, L91
- [100] Monet, D.G., Levine, S.E., Canzian, B., at al. 2003, AJ, 125, 984
- [101] Montero-Dorta, A. D., & Prada, F. 2008, arXiv:0806.4930
- [102] Muller Sanchez, F., Davies, R. I., Genzel, R., Tacconi, L. J., Hicks, E., & Friedrich, S. 2008, Revista Mexicana de Astronomia y Astrofisica Conference Series, 32, 109
- [103] Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569
- [104] Natarajan, P., Kneib, J.-P., & Smail, I. 2002, ApJL, 580, L11
- [105] Nelson, C. H., & Whittle, M. 1996, ApJ, 465, 96

Βιβλιογραφία

- [106] Nicastro, F. 2000, ApJ, 530, L65
- [107] Oliva, E., Origlia, L., Maiolino, R., & Moorwood, A. F. M. 1999, A&A, 350, 9
- [108] Osterbrock, D. E. 1960, ApJ, 132, 325
- [109] Padmanabhan, T. Theoretical Astrophysics, Volume III : Galaxies and Cosmology, Cambridge University Press 2002
- [110] Pennington R. L., Humphreys, R. M., Odewahn, S. C., Zumach, W., and Thurmes, P. M. 1993, PASP, 105, 521
- [111] Plionis, M., & Valdarnini, R. 1991, MNRAS, 249, 46
- [112] Plionis, M., Observational Cosmology and The L-S Structure of the Universe, Institute of Astronomy and Astrophysics 2001
- [113] Popesso, P., & Biviano, A. 2006, A&A, 460, L23
- [114] Robson, I., Active Galactic Nuclei, John Wiley & Sons Ltd 1996
- [115] Ruderman, J. T., & Ebeling, H. 2005, ApJL, 623, L81
- [116] Sanchez, S.F., Gonzalez-Serrano, J.I., 2003, A&A, 406, 435
- [117] Sanders, D. B., Egami, E., Lipari, S., Mirabel, I. F., & Soifer, B. T. 1995, AJ, 110, 1993
- [118] Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A., & Soifer, B. T. 2003, AJ, 126, 1607
- [119] Sanders, D. B., Surace, J. A., & Ishida, C. M. 1999, IAU Symp. 186: Galaxy Interactions at Low and High Redshift, 186, 289
- [120] Schmitt, H. R., 2001, AAS, 198, 3601
- [121] Serber, W., Bahcall, N., Menard, B., & Richards, G. 2006, ApJ, 643, 68
- [122] Shu, X.-W., Wang, J.-X., & Jiang, P. 2008, Chinese Journal of Astronomy and Astrophysics, 8, 204
- [123] Siebenmorgen, R., Haas, M., Krugel, E., & Schulz, B. 2005, A&A, 436, L5
- [124] Silk, J., & Rees, M. J. 1998, A&A, 331, L1
- [125] Soifer, B. T., Boehmer, L., Neugebauer, G., & Sanders, D. B. 1989, AJ, 98, 766
- [126] Spergel, D. N. et al. 2007, ApJS, 170, 377
- [127] Springel, V., Di Matteo, T., & Hernquist, L. 2005, ApJL, 620, L79
- 176

- [128] Stasinska, G., Cid Fernandes, R., Mateus, A., Sodre, L., & Asari, N. V. 2006, MNRAS, 371, 972
- [129] Storchi-Bergmann, T., Gonzalez Delgado, R. M., Schmitt, H. R., Cid Fernandes, R., & Heckman, T. 2001, ApJ, 559, 147
- [130] Surace, J. A., Sanders, D. B., & Mazzarella, J. M. 2004, AJ, 127, 3235
- [131] Tang, Y.-W., Kuo, C.-Y., Lim, J., & Ho, P. T. P. 2008, ApJ, 679, 1094
- [132] Tran, H. D. 2003, ApJ, 583, 632
- [133] Tremonti, C. A., Moustakas, J., & Diamond-Stanic, A. M. 2007, ApJL, 663, L77
- [134] Veilleux, S., & Osterbrock, D. E. 1987, ApJs, 63, 295
- [135] Veilleux, S., Goodrich, R. W., & Hill, G. J. 1997, ApJ, 477, 631
- [136] Virani, S.N., Robertis, M.M., van Dalfsen, M.L., 2000, Ann.d'Ap., 24, 369
- [137] Veron-Cetty, M.P., & Veron, P., 2000, apjs, preprint doi:10.1086/381753
- [138] Veron-Cetty, M.-P., Balayan, S. K., Mickaelian, A. M., Mujica, R., Chavushyan, V., Hakopian, S. A., Engels, D., Veron, P., Zickgraf, F.-J., Voges, W., Xu, D.-W., 2004, A&A, 414, 487
- [139] Wake, D. A., et al. 2004, ApJL, 610, L85
- [140] Wang, J. L., Xia, X. Y., Mao, S., Cao, C., Wu, H., & Deng, Z. G. 2006, ApJ, 649, 722
- [141] Wang, L., & Kauffmann, G. 2008, arXiv:0801.3530
- [142] Willmer, C.N.A., da Costa, L.N. & Pellegrini, P.S., 1998, AJ, 115, 869
- [143] Evolution of AGN an optical view, Wolf 2002
- [144] Warmels, R. H., & van Woerden, H. 1984, Clusters and Groups of Galaxies. International Meeting held in Trieste, Italy, 1983. Editors, F. Mardirossian, G. Giuricin, M. Mezzetti; Publisher, D. Reidel Pub. Co., Dordrecht, Holland, Boston, MA, Hingham, MA, U.S.A. P.251, 1984, 251
- [145] Zickgraf et al. 1997, A&A, 323, 21

177